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Abstract
We apply the theory of finite order automorphisms of a semisimple Lie group

developed by Vinberg to the study of cyclic Higgs bundles, which correspond to the
fixed points of actions of finite cyclic groups on the moduli space of Higgs bundles. For
some of the resulting spaces, we introduce a topological invariant which extends the
previously existing Toledo invariant for the case of spaces of fixed points by actions
of Z/2Z of Hermitian type as well as for the spaces of fixed points by the C∗-action.
We prove a bound for this invariant and we exhibit a rigidity phenomenon when the
bound is attained. Finally, we explore certain aspects of the Hitchin fibration on the
spaces of cyclic Higgs bundles, giving a description of the generic fibres in a selected
family of examples.
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CHAPTER 1

Introduction

Higgs bundles were introduced by Hitchin in 1987 [34], appearing naturally as solu-
tions of the self-duality equations on a Riemann surface, a dimensional reduction of
the instanton physics Yang-Mills equation in four dimensions. For a complex semisim-
ple Lie group G with Lie algebra g and a compact Riemann surface X of genus g ≥ 2,
they can be defined as pairs (E,φ) consisting of a holomorphic principal G-bundle
E over X and a holomorphic section φ of the vector bundle E(g)⊗KX , where E(g)
is the vector bundle associated to E via the adjoint representation of G in g and
KX = T ∗X is the holomorphic cotangent bundle of X.

Since their introduction, these objects have been extensively studied, showcasing
many interesting properties. There are stability notions for a Higgs bundle, and the
moduli space of polystable Higgs bundles, M(G), has been shown to possess a very rich
topology and geometry. One of the major aspects is the existence of the nonabelian
Hodge correspondence [15, 18, 34, 47, 49], via which M(G) is homeomorphic to the
variety of G-characters of π1(X), whose elements are the (completely reducible) rep-
resentations ρ : π1(X) → G. Moreover, the smooth locus of M(G) has a hyperkähler
structure, consequence of its interpretation as solution of the self-duality equations.

Furthermore, there exists [32] a completely integrable system M(G) → A, known
as the Hitchin system, which maps the moduli space onto an affine space with the
generic fibres being abelian varieties. This fibration can be used to relate the moduli
space M(G) to mirror symmetry and Langlands duality, central aspects in current
mathematics. It has been a key ingredient of the proof for the Fundamental Lemma
of the Langlands program by Ngô, for which he was awarded a Fields medal. This
system also has a distinguished section [33], commonly referred to as Hitchin section
(which is unique if G is adjoint), whose image is a component in M(GR), the moduli
space of GR-Higgs bundles, where GR ⊆ G is the split real form of G. This component
is called Hitchin component and it generalises Teichmüller space.

Our goal is to study the theory of Higgs bundles that arises in relation to finite
order automorphisms θ of the group G (see [20] for a recent exploration of this idea,
as well as [25]). Such an automorphism induces a grading of the Lie algebra g by a
finite cyclic group Z/mZ, where m is the order of θ, and the fixed point subgroup
Gθ ≤ G, which is reductive with Lie algebra g0, acts via the adjoint representation
on each piece gi of the grading. The resulting pairs (Gθ, gi) were originally studied
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2 Introduction

by Vinberg [50], and are called Vinberg θ-pairs in consequence. We will also consider
other groups with the same Lie algebra g0, such as the connected component of the
identity G0 ⊆ Gθ, or Gθ, the G-normaliser of Gθ.

Given a Vinberg θ-pair (Gθ, gi), it is possible to use the fact that Gθ ≤ G, gi ⊆
g and Gθ acts on gi to define, in an analogous manner to Higgs bundles, objects
denominated (Gθ, gi)-Higgs pairs, which are pairs (E,φ) where E is a holomorphic
principal G0-bundle and φ is a holomorphic section of E(gi)⊗KX . There also exist
stability notions for these pairs, providing a well defined moduli space M(Gθ, gi).
This space maps into M(G), and the G-Higgs bundles in the image are called θ-
cyclic Higgs bundles. These will be our main object of study.

An important, extensively studied particular case of θ-cyclic Higgs bundles occurs
when θ has order two. For the Vinberg θ-pairs (Gθ, g1), there is a corresponding real
form GR ≤ G such that the nonabelian Hodge correspondence can be extended to
provide a homeomorphism between the moduli space M(Gθ, g1) and the variety of
characters of π1(X) with values in the real Lie group GR. The resulting Higgs pairs
are also called GR-Higgs bundles in consequence.

Another important reason for the study of θ-cyclic Higgs bundles is that they
appear as fixed point subvarieties in M(G) of the action of finite cyclic groups [25].
This action is the one generated by (E,φ) 7→ (θ(E), ζθ(φ)), for ζ a primitive m-th
root of unity, where m is the order of θ. In the case of order two, the resulting
subvarieties are lagrangian with respect to one of the Kähler structures on M(G).

One of the main results of Vinberg [50, 51] with regard to Vinberg θ-pairs (Gθ, gi)

is the fact that the invariant polynomial ring C[gi]G
θ is isomorphic to a (finitely gener-

ated) polynomial ring. This makes it possible to define a Hitchin map M(Gθ, gi) → A
onto an affine base in analogy to the aforementioned Hitchin system. This map has
been studied in the order two case [23, 29, 42, 44, 45], but its study in the higher
order case has not yet been approached.

Cyclic Higgs bundles have also appeared in different contexts in the literature.
They were first introduced in [48], where Simpson refers to them as cyclotomic har-
monic bundles, and they are used to construct local systems with specific properties.
In [3], Baraglia defines cyclic Higgs bundles as certain subspace of the Hitchin compo-
nent, which coincides with the θ-cyclic Higgs bundles as explained above inside of said
component. The motivation for this is that they constitute solutions for the affine
Toda equations, from which extra properties of these bundles can be deduced. The
same Higgs bundles have also been studied in [17] from the point of view of harmonic
maps and in [39] in the case of non-compact Riemann surfaces. In [37], cyclic Higgs
bundles in the Hitchin component (as before) are related to cyclic surfaces, which
can be used to prove the existence of minimal surfaces in certain rank 2 symmetric
spaces. These ideas have also been exploited in more recent work [13] to parametrise
certain class of holomorphic curves in the pseudosphere of dimension 6. As mentioned
above, in [25] it is shown that θ-cyclic Higgs bundles appear as fixed points subva-
rieties in M(G) of the action of finite cyclic groups. In [14], θ-cyclic Higgs bundles
for θ of inner type are considered, providing (among other results) a parametrisation
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of certain components of M(SO0(n, n+ 1)) generalising the Hitchin component and
undetected by the main topological invariants of the space.

We explore mainly two aspects of cyclic Higgs bundles. The first one is relevant
in the case where the cyclic grading of the Lie algebra g lifts to a Z-grading satisfying
certain properties. Such a lift always exists in the case, among many others, of inner
automorphisms of SLn(C). For this situation we define a topological invariant, the
Toledo invariant, which generalises the Toledo invariant existing for the order two
case [6] (the corresponding real forms GR for which a good lifting Z-grading exists
are called of hermitian type as the associated symmetric space is hermitian) as well
as for Higgs bundles associated to a Z-grading of the Lie algebra [5].

For this Toledo invariant we prove a bound, known in the aforementioned partic-
ular cases as the Arakelov–Milnor–Wood inequality, which is the content of Theorem
8. In the case of real forms of hermitian type of a special kind, called tube type, there
exist rigidity results [6] for the locus of Higgs bundles attaining the bound. We extend
these results to the analogue of tube type in Vinberg θ-pairs, called JM-regular. This
occurs in the form of the Cayley correspondence which establishes that the locus of
cyclic Higgs bundles whose Toledo invariant attains the bound injects into the mod-
uli space of (C, V )-Higgs bundles for a different pair (C, V ) associated to a subgroup
C ≤ G and a subspace V ⊆ g. We also show that the map is surjective in the case
where (C, V ) is a Vinberg θ′-pair for a different automorphism θ′ on a different group
G′. This is the content of Theorem 9.

The second main aspect that was explored is the Hitchin map. For the order
two case, it is known [23] that the abelianness of the generic fibre occurs when the
associated real form GR satisfies the condition of being quasi-split. We start by
proposing, in Definition 23, a natural extension of quasi-split applying to any Vinberg
θ-pair. Then, for a particular class of quasi-split inner Vinberg pairs of G = SLn(C),
we extend the results of Schaposnik [45] to give a description of the generic fibres of
the Hitchin map, using spectral curves, from which it can be checked that they are
abelian, and also it can be used to provide a different proof for the bounds on the
Toledo invariant in this case. This is collected in Proposition 12 and Proposition 14.

The document is structured as follows. Chapter 2 is devoted to the introduction
of the Lie theoretical ingredients that will play a role in the definition and study of
cyclic Higgs bundles and their moduli spaces. First, in Section 2.1, we collect the
theory of Z-gradings of Lie algebras following [36, Chapter X]. Even though at first
cyclic Higgs bundles do not seem to be directly related to these gradings, their study
will be necessary as a main tool for some of the results relating to them. Then, in
Section 2.2 we introduce cyclic gradings of Lie algebras and some of the aspects of
the theory of Vinberg θ-pairs. For both types of gradings, we explain their existing
classification in terms of labellings of Dynkin diagrams and Kac diagrams. Three of
the main references for the chapter are [51, Section 3.7], [27, Chapter 3] and [50].

In Chapter 3 we introduce the main definitions of the general theory of Higgs
bundles over a compact Riemann surface and their moduli spaces. First, in Section
3.1, we define Higgs pairs for a representation of a Lie group, which we motivate
by examining properties of the resulting objects for particular choices of groups and
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representations. We will also introduce the notions of stability that are required in
order to define moduli spaces with desirable geometric properties. Next, in Section 3.2
we explain how the fixed points of a natural C∗-action on the moduli space consists of
Higgs pairs associated to a certain Z-grading. Finally, in Section 3.3 we define cyclic
Higgs bundles and explain their relation with Vinberg θ-pairs.

Then, in Chapter 4 we introduce a topological invariant for moduli spaces of
(G0, ḡ1)-Higgs pairs, where (G0, ḡ1) is a Vinberg θ-pair coming from a special Z-
grading as explained in Section 2.2. It generalizes the Toledo invariant for moduli
spaces of GR-Higgs bundles where GR is a real form of hermitian type of G intro-
duced in [6], which was motivated by previous studies in particular cases such as
GR = SU(p, q) in [10]. It also generalizes the Toledo invariant for moduli spaces of
(G0, g1)-Higgs pairs associated to a prehomogeneous vector space (G0, g1) introduced
in [5]. In section 4.1 we explain how the invariant is defined, in terms of the theory
of prehomogeneous vector spaces, using the fact that the Vinberg θ-pair comes from
a Z-grading. We also compute the value of the invariant in the case of cyclic quiv-
ers presented in Example 5. In section 4.2 we establish the Arakelov–Milnor–Wood
inequality, which shows that the Toledo invariant can only take values in an interval
bounded below. Finally, in Section 4.3 we explore the resulting moduli space when
the Toledo invariant attains the bound from the previous inequality. We use ideas of
previous works [5, 6, 9, 10].

Chapter 5 is devoted to the study of the Hitchin map, a fibration of the moduli
space M(G0, gi) for Vinberg θ-pairs (G0, gi) over a vector space A. In Section 5.1
we will define the Hitchin map and explore some of its features such as the existence
of a section in the case of G-Higgs bundles. In Section 5.2 we will see why in the
case of G-Higgs bundles the generic fibre is an abelian variety, by describing what
this fibre is using the spectral correspondence. For the case of Higgs bundles of real
forms, it is known [23] that this good behaviour on the fibers arises when the form
is quasi-split, so in Section 5.3 we give a candidate definition for quasi-split Vinberg
θ-pairs and compute some examples of such pairs. In Section 5.4 we show how a
spectral correspondence for the real form SU(k, k) established by Schaposnik [45] can
be generalized to the case of cyclic quiver bundles where each piece has the same
rank, and we derive in this situation the Arakelov–Milnor–Wood inequality proven in
previous chapter as a consequence of this description.

Finally, in Chapter 6 we collect the conclusions of this document and discuss
possible future lines of work.
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CHAPTER 2

Lie theory background

2.1. Z-gradings and Vinberg C∗-pairs

Throughout this section we consider a finite-dimensional complex semisimple Lie
algebra g.

Definition 1. A Z-grading of a finite-dimensional complex semisimple Lie algebra
g is a decomposition as a direct sum of vector subspaces

g =
⊕
j∈Z

gj ,

such that [gj , gk] ⊆ gj+k.

Notice that, since g is finite-dimensional, gj = 0 for all but finitely many j ∈ Z.
Also, g0 is a Lie subalgebra, as [g0, g0] ⊆ g0. Moreover, every element in gj for j ̸= 0
is nilpotent, in other words, given e ∈ gj , the map ad(e) : g → g given by X 7→ [e,X]
is nilpotent. Indeed, if X ∈ gk, we have that ad(e)r(X) ⊆ grj+k so for large enough
r it must become zero.

The existence of a Z-grading is equivalent to a C∗-action on g by Lie algebra
automorphisms.

Proposition 1. Let g be a semisimple complex Lie algebra. There is a bijection
between Z-gradings of g and group homomorphisms γ : C∗ → Aut(g).

Proof. Given a Z-grading g =
⊕

j∈Z gj and λ ∈ C∗, define γλ : g → g by γλ|gj =

λj Idgj . It is a Lie algebra automorphism because if X ∈ gj , Y ∈ gk, we have
γλ[X,Y ] = λj+k[X,Y ] = [λjX,λkY ] = [γλX, γλY ]. The map γ : λ 7→ γλ is clearly a
group homomorphism.

On the other hand, given a group homomorphism γ : C∗ → Aut(g), we have the
decomposition g =

⊕
j∈Z gj in weight spaces gj = {X ∈ g : γ(λ)X = λjX}, which

give a Z-grading due to the fact that each γ(λ) is compatible with the Lie bracket.
We have the following result [36, Lemma 10.15].

5



6 Lie theory background

Proposition 2. Let g =
⊕

j∈Z gj be a Z-graded complex semisimple Lie algebra.
Then, there exists a grading element, that is, ζ ∈ g0 such that gj = {X ∈ g : [ζ,X] =
jX}.

Proof. Consider the linear map D : g → g given by D|gk = k Idgk . Take X ∈ gj and
Y ∈ gk. Then D[X,Y ] = (k+ j)[X,Y ] = [DX,Y ] + [X,DY ]. Thus D is a derivation
of g. The only derivations of a semisimple Lie algebra are the ones of the form ad(Z)
for Z ∈ g [36, Proposition 1.121], thus D ≡ ad(ζ). As D(ζ) = [ζ, ζ] = 0, we have
ζ ∈ g0.

Notice that we always have [g0, gj ] ⊆ gj . This phenomenon has the following
consequence: suppose that G is some semisimple complex Lie group with algebra g,
and G0 ≤ G is the connected subgroup corresponding to g0. Then G0 acts on gj by
restriction of the adjoint action on g. This action, even though it is not necessarily
transitive (that is, g is not a homogeneous vector space), has an open orbit.

Definition 2. Let G be a complex reductive Lie group and ρ : G → GL(V ) a
(holomorphic) representation. If there exists an open G-orbit Ω ⊆ V , the vector
space V is called a prehomogeneous vector space for G.

In this case it can be seen [36, Proposition 10.1] that the open orbit is dense and
unique. Typically we will also say that the pair (G,V ) is a prehomogeneous vector
space.

Theorem 1 (Vinberg [36, Theorem 10.19]). Let G be a complex semisimple Lie group
with Lie algebra g and g =

⊕
j∈Z gj a Z-grading. Let G0 ≤ G be the centralizer of

the grading element ζ. Then G0 is reductive and (G0, g1) is a prehomogeneous vector
space.

Remark 1. The theorem above works with the first graded piece, g1. However,
given j ̸= 0, the Lie algebra g has a Z-graded subalgebra given by

⊕
k∈Z gkj whose

first piece is gj and whose zeroth piece is g0, to which we can apply the previous
theorem to conclude that (G0, gj) is a prehomogeneous vector space. This is why,
in general, we will mostly be concerned with prehomogeneous vector spaces (arising
from Z-gradings) of the form (G0, g1).

These prehomogeneous vector spaces coming from Z-gradings will be of special
interest, so we give the following definition.

Definition 3. Let G be a complex semisimple Lie group with Lie algebra g and
g =

⊕
j∈Z gj a Z-grading. Let G0 ≤ G be the centralizer of the grading element ζ.

The prehomogeneous vector spaces (G0, gk) (for k ̸= 0) are called Vinberg C∗-pairs.

Definition 4. Let (H,W ) and (G,V ) be two prehomogeneous vector spaces. If H ⊆
G is a subgroup, W ⊆ V is a vector subspace, and the action of H in W is obtained by
restricting the action of G on V , we say that (H,W ) is a prehomogeneous vector
subspace of (G,V ).

The last necessary concept relates to the following standard theorem about nilpo-
tent elements on Lie algebras (that is, elements e ∈ g such that ad(e) is nilpotent):
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Theorem 2 (Jacobson–Morozov, [36, Theorem 10.3]). Let g be a complex semisimple
Lie algebra and e ∈ g a nonzero nilpotent element. Then, there exist h, f ∈ g such that
[h, e] = 2e, [e, f ] = h and [h, f ] = −2f , that is, the triple (h, e, f), called sl2-triple,
spans a Lie subalgebra isomorphic to sl2C.

Moreover, for any h ∈ g with [h, e] = 2e and h ∈ ad(e)(g), it is possible to find a
unique f ∈ g with the previous properties.

This implies that, denoting by e′, h′, f ′ the generators of sl2C satisfying [h′, e′] =
2e′, [e′, f ′] = h′, [h′, f ′] = −2f ′, there is a Lie algebra representation sl2C → End(g) =
gl(g) given by e′ 7→ ad(e), h′ 7→ ad(h) and f ′ 7→ ad(f).

Going back to Z-gradings and the associated prehomogeneous vector space (G0, g1),
as g1 consists only of nilpotent elements, we can first ask in which graded pieces do
the associated h and f belong. We have the following result [36, Lemma 10.18].

Proposition 3. Let g =
⊕

k∈Z gk be a graded complex semisimple Lie algebra and
suppose that e ∈ g1 is nonzero. Then it is possible to choose the sl2-triple (h, e, f)
with h ∈ g0 and f ∈ g−1.

Proof. We already know that e is nilpotent, so by Theorem 2 we obtain an sl2-triple
(h, e, f). Write h =

∑
k∈Z hk and f =

∑
k∈Z fk the decompositions according to the

grading. Then, 2e = [h, e] =
∑

k∈Z[hk, e] implies that [h0, e] = 2e (and [hj , e] = 0
for j ̸= 0). Similarly, from h = [e, f ] =

∑
k∈Z[e, fk] we get that [e, f−1] = h0. In

other words, we can use the last part of Theorem 2 with h0, so that there exists an
sl2-triple (h0, e, f

′).
Finally, writing f ′ =

∑
k∈Z f

′
k the decomposition according to the grading, we have

[e, f ′
−1] = h0 as before, but also −2f ′ = [h0, f

′] =
∑

k∈Z[h0, f
′
k], so that [h0, f

′
−1] =

−2f ′
−1. Hence (h0, e, f

′
−1) is the desired triple.

Thus, it is possible to take an element e ∈ g1 and complete it to (h, e, f) with
h ∈ g0. Then, ad(h2 ) also fixes e, so we can compare the original grading to the one
one having grading element ad(h2 ). It will be technically convenient when the two
agree, motivating the following definition from [5].

Definition 5. Let (G0, g1) be the prehomogeneous vector space with open orbit
Ω ⊆ g1 associated to a Z-grading of a complex semisimple Lie algebra g with grading
element ζ. We say that it is Jacobson–Morozov regular or JM-regular if there
exists an sl2-triple (h, e, f) with e ∈ Ω such that ζ = h

2 .

In this case, it is a consequence of Malcev–Kostant theorem [36, Theorem 10.10]
that every element e ∈ Ω can be included into such a triple (2ζ, e, f). Also, in the
above situation, if e ∈ Ω is chosen and (h, e, f) is any sl2-triple with h ∈ g0 (not
necessarily the one with h = 2ζ), then h is conjugate to 2ζ under the adjoint action
of G0, by [5, Proposition 2.19].

We will now see some examples of prehomogeneous vector spaces.

Example 1. The vector space Cn is a prehomogenous vector space for the standard
representation of GLn(C). Indeed, for any nonzero v, w ∈ Cn we can find many
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invertible transformations A ∈ GLn(C) with Av = w. On the other hand A0 = 0 for
any A ∈ GLn(C). Thus the action has two orbits, Ω = Cn \ {0} and {0}, the first of
which is open.

Example 2. We will analyse in detail one of the main examples that we use later. We
take G = SLn(C), the determinant one invertible linear transformations of a complex
n-dimensional vector space V . We fix a direct sum decomposition V = V0⊕· · ·⊕Vm−1,
where if dimVi = di then

∑
i di = n. Then, the Lie algebra g = slnC consists of

traceless endomorphisms of V , which we grade by

gk :=

m−1⊕
j=0

Hom(Vj , Vj+k)


0

,

where Vj = 0 for j /∈ {0, . . . ,m−1} and the subscript zero means taking the subspace
of traceless endomorphisms, and is only meaningful for g0. This is alternatively
defined by the grading element ζ ∈ g0 = (

⊕m−1
j=0 End(Vj))0 given by ζ|Vj = (j −

α) Id |Vj , where α is a fixed constant (depending on the di) so that the obtained map
is traceless.

The associated prehomogeneous vector space is (G0, g1), where

G0 = S(GLd0(C)× · · · ×GLdm−1(C)),

g1 =
m−1⊕
j=0

Hom(Vj , Vj+1).

The space g1 consists of representations of a quiver with m vertices and arrows
i 7→ i + 1 for i ∈ {0, . . . ,m − 2} (a linear quiver, or type Am quiver, the latter as a
reference to Dynkin diagram types) where we put Vi on the i-th vertex:

V0 V1 . . . Vm−1
f0 f1 fm−2

.

The orbits of the action of G0 on such representations have been studied and are
explained, for example, in [1, Section 2] (more precisely, they study the action of∏

GLdi(C), but it can be checked that it has the same orbits as that of G0). For
an element f ∈ g1 as in the previous diagram, and 0 ≤ i < j ≤ m − 1, we denote
rij := rank(fj−1 ◦ · · · ◦ fi) the rank of the consecutive composition, a linear map
from Vi to Vj . Then, each feasible choice of ranks (rij)0≤i<j≤m−1, with 0 ≤ rij ≤
min{di, . . . , dj}, determines a unique orbit. The open orbit is the one where ranks
are maximal, that is, rij = min{di, . . . , dj} for all i, j.

Finally, let us explain how to determine whether this prehomogeneous vector space
is JM-regular. An element of the open orbit Ω ∈ g1 is given by e = (e0, . . . , em−1)
where each ej : Vj → Vj+1 is of maximal rank. For example, we can choose a basis
Bj = {vj1, . . . , v

j
dj
} for each Vj and let ej be the one with matrix

(
Iddj+1

0
)

or(
Iddj
0

)
, depending on whether dj ≤ dj+1. In order to complete e to an sl2-triple, we
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can do so from the Jordan blocks of e. This is because if {u0, . . . , us−1} is a basis for
a Jordan block (that is, e(uk) = uk+1 for k < s− 1, e(us) = 0, and Im(e)∩ ⟨u0⟩ = 0),
then one can define a traceless linear map h by h(uj) = −(s− 1− 2j)uj . Doing this
on each Jordan block gives h ∈ g with [h, e] = 2e and the remaining f is defined
as f(uj) = j(s − j)uj−1. Moreover, notice that by definition of e, we can partition
the basis

∪m−1
j=0 Bj into Jordan blocks. This means that the resulting h given by the

previous method is actually in g0.
As ζ is fixed by the action of G0, the JM-regular cases are precisely whenever the

h constructed above equals 2ζ. In short, given the dimensions dj , the above procedure
determines whether the space is JM-regular or not. An example of JM-regular case
that can be verified with the previous method is when dj = dm−j−1 for j ∈ {0, . . . , c}
and d0 ≤ d1 ≤ · · · ≤ dc, where c = ⌊m−1

2 ⌋.

2.1.1. Classification of Z-gradings

We will finish the section by exhibiting how every possible Z-grading on g can be
classified, following [27]. Consider a Z-grading γ : C∗ → Aut(g). Let t ⊆ g be a
Cartan subalgebra. As the grading element ζ is semisimple (i.e. ad(ζ) diagonalises),
we can assume that ζ ∈ t (see, for example, [36, Proposition 2.13]). Select a system of
simple roots Π = {α1, . . . , αr} of g with respect to t with αi(ζ) ≥ 0 (otherwise replace
αi by −αi). As ad(ζ) has integral eigenvalues, we also have that pi := αi(ζ) ∈ Z. Let
∆ ⊆ t∗ be the root system for t ⊆ g and recall the root space decomposition

g = t⊕
⊕
α∈∆

gα,

where
gα = {X ∈ g : [T,X] = α(T ) ·X,T ∈ t}.

Since ad(ζ) acts with eigenvalue pi on gαi , we have with respect to the Z-grading that
gαi ⊆ gpi . Moreover, the bracket relation for root spaces

[gα, gβ] =


gα+β if α+ β ∈ ∆

0 if α+ β /∈ ∆, α+ β ̸= 0

a one-dimensional subspace of t if α+ β = 0

gives that for any root α =
∑r

i=1 kiαi we have gα ⊆ gp with p =
∑r

i=1 kipi. As the
Cartan subalgebra is abelian and ζ ∈ t, we also have t ⊆ g0.

If we now choose a different Z-grading, given by the element ζ ′, it could be that
ζ ′ /∈ t or that αi(ζ

′) < 0 for some i, but there always exists [27, Section 3.3.5] an
automorphism a ∈ Aut(g) with a(ζ ′) ∈ t and with αi(a(ζ

′)) ≥ 0. This automorphism
is of the form exp(ad(X)) for some X ∈ g, i.e. an inner automorphism. The
group of inner automorphisms, Int(g) ⊆ Aut(g), is precisely the identity component
of Aut(g). The quotient Out(g) := Aut(g)/ Int(g) is called the group of outer auto-
morphisms. As a(ζ ′) satisfies the desired conditions, we can apply the same analysis
as above with respect to the roots of t to the grading given by a(ζ ′).
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Thus, every Z-grading, up to inner automorphism, is given by numbering each
of the simple roots Π with a non-negative integer pi ∈ Z≥0. Conversely, any such
numbering results in a Z-grading where we set gp =

⊕
α∈∆p

gα for p ̸= 0, where
∆p = {α =

∑
kiαi :

∑
kipi = p} and g0 = t⊕

⊕
α∈∆0

gα with ∆0 defined analogously.
Recall finally that, since g is semisimple, it has an associated Dynkin diagram

which is a tree whose vertices are the elements of Π and an edge between αi and
αj exists if and only if αi + αj ∈ ∆ (the edge has multiplicity depending on the
angle between αi and αj in t∗ with respect to the dual of the Killing form). Thus,
Z-gradings are classified (up to inner automorphism) by labellings of the Dynkin
diagram vertices with non-negative integers.

Example 3. We will exhibit the numbering of the Dynkin diagram for the Z-grading
in Example 2. In this example, we have g = slnC so that the Dynkin diagram is of
type An−1:

• • . . . • •,

which is a linear tree with n− 1 vertices. As ζ ∈ g0 is given by ζ|Vj = (j −α) IdVj , it
is a diagonal matrix (we work with respect to a basis of V obtained by concatenating
bases of V0,. . . ,Vm−1 in that order) so that we can take t ⊆ g to be the subalgebra
of diagonal (and traceless) n × n matrices. Letting ei ∈ t∗ be the linear form that
reads the i-th entry of the diagonal, we choose as simple roots αi = ei+1 − ei for
i ∈ {1, . . . , n − 1}. These work because the entries on the diagonal of ζ are non
decreasing, so αi(ζ) ≥ 0.

Recall that the root spaces with respect to these simple roots αi are gαi = C ·Ei,
where Ei is the matrix whose only non-zero entry is a 1 at the (i+1)-th row and i-th
column, hence sending the i-th basis vector to the (i + 1)-th basis vector. Thus, it
is an endomorphism of some Vj (so that Ei ∈ g0) unless i ∈ {d0, d0 + d1, d0 + d1 +

d2, . . . ,
∑m−2

l=0 dl}, since if i =
∑k

l=0 dl then Ei ∈ Hom(Vk, Vk+1) ∈ g1. This shows
that the corresponding labelling of the Dynkin diagram has a zero on each vertex
except for the ones at positions of the form

∑k
l=0 dl for k ∈ {0, . . . ,m − 2} where it

has a one. The following is an example for the d0 = 1, d1 = 3, d2 = 2 case, where the
simple roots are ordered left to right:

•1 •0 •0 •1 •0.

2.2. Z/mZ-gradings and Vinberg θ-pairs

In the same way as above, we can define cyclic gradings on semisimple Lie algebras.

Definition 6. Let m ∈ N and let g be a semisimple complex Lie algebra. A Z/mZ-
grading of g is a decomposition as a direct sum of vector subspaces

g =
⊕

j∈Z/mZ

gj ,

such that [gj , gk] ⊆ gj+k.
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Although the definition is similar, there are fundamental differences with respect
to Z-gradings. For example, it is no longer true that every element in gj for j ̸= 0
is nilpotent. As in the previous section, we can view gradings in terms of automor-
phisms:

Proposition 4. Let g be a semisimple complex Lie algebra. There is a bijection
between Z/mZ-gradings of g and group homomorphisms γ : µm → Aut(g), where
µm = {z ∈ C∗ : zm = 1} is the subgroup of m-th roots of unity. These homomor-
phisms are also in bijection with order m automorphisms θ ∈ Autm(g).

Proof. The last assertion is a consequence of µm being the cyclic group of order m.
Fix ζ ∈ C∗ a primitive m-th root of unity. From Z/mZ-grading g =

⊕
j∈Z/mZ gj , we

obtain an order m automorphism θ by the rule θ|gj ≡ ζj Idgj . This is well defined
and of order m, both because ζm = 1. It is compatible with the bracket: if X ∈ gj
and Y ∈ gk, we have θ[X,Y ] = ζj+k[X,Y ] = [ζjX, ζkY ] = [θX, θY ].

Conversely, given θ ∈ Autm(g), we obtain a Z/mZ-grading by taking the eigenspace
decomposition, that is, setting gj = {X ∈ g : θX = ζjX}. We can do so because
the minimal polynomial is θm − 1 which has distinct roots. The fact that it is a
Z/mZ-grading comes from the compatibility of θ with the Lie bracket.

In all the situations we consider there is a complex semisimple Lie group G with
Lie algebra g, and the θ ∈ Autm(g) lifts to an order m automorphism of G, that is,
there is some θ̃ ∈ Autm(G) whose tangent map at 1G is θ. In what follows we denote
by θ both automorphisms, as the context will make clear which of the two we are
referring to. This assumption is automatic for simply connected G, and in any event
it will be satisfied in our cases of interest.

Now let G0 ≤ G be the connected subgroup corresponding to the Lie algebra g0.
In fact, for what follows it is also possible to take in place of G0 any closed subgroup
G′ ≤ Gθ (where Gθ is the G-normaliser of the fixed point group Gθ) satisfying G0 ≤
G′. For example, the choice of Gθ is more natural from the point of view of cyclic
Higgs bundles, as we will see in Section 3.3. In any case, the chosen group is reductive
with Lie algebra g0 and, as in the Z-grading case, the adjoint representation restricted
to each graded piece gives an action G′ → Aut(gj), from the fact that [g0, gj ] = gj .

Definition 7. Let G be a complex semisimple Lie group with Lie algebra g and
θ ∈ Autm(G). The pair (G0, g1) constructed as above is called a Vinberg θ-pair.

Remark 2. As in Remark 1, it is enough to consider the action of G0 on g1. This is
because the subalgebra

⊕
j∈Z/m′Z gjk is a Z/m′Z-graded algebra with zero-th piece

g0 and first piece gk, for m′ = m
(m,k) .

A key aspect for considering Vinberg θ-pairs is the good structure of the G0-
invariant polynomial functions on g1, which will permit some of the geometric con-
structions in Chapter 5. We denote by C[g1]G0 = {p ∈ Sym(g∗1) : p(Ad(g)(x)) =
p(x), x ∈ g1, g ∈ G0} the ring of invariant polynomial functions. In order to say more
about its structure, we need the following definitions:
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Definition 8. Let (G0, g1) be a Vinberg θ-pair. A Cartan subspace is a vector
subspace c ⊆ g1, maximal with the following properties: [c, c] = 0, and each X ∈ c
verifies that adX is diagonalizable.

Definition 9. Let (G0, g1) be a Vinberg θ-pair with Cartan subspace c. Let NG0(c) =
{g ∈ G0 : Ad(g)(c) ⊂ c} be the normaliser of c under the G0-action, and CG0(c) =
{g ∈ G0 : Ad(g)(X) = X,X ∈ c} be the centraliser. The little Weyl group is
defined by W (c) = NG0(c)/CG0(c).

Then, we have the following main result of [50].

Theorem 3. Let (G0, g1) be a Vinberg θ-pair with Cartan subspace c. Then, re-
striction of polynomial functions from g1 to c defines a ring isomorphism C[g1]G0 →
C[c]W (c).

Moreover, W (c) is a finite group acting by complex reflections by an hyperplane,
and C[c]W (c) ≃ C[g1]G0 is a polynomial ring, that is, it is generated freely by some
finite subset of homogeneous polynomials, {f1, . . . , fr} ⊂ C[g1]G0, where r = dim c is
called the rank of the pair.

Remark 3 (Saturation). The previous theorem is proven assuming that G0 is the
connected subgroup of G with Lie algebra g0. A Z/mZ-grading θ ∈ Autm(G) is said
to be saturated if the invariant ring C[g1]G

′ is the same for any choice of closed
subgroup G0 ≤ G′ ≤ Gθ. If c ⊆ g1 is a Cartan subspace, Vinberg [50] characterises
saturated automorphisms as those where every class in Gθ/G0 contains an element
in the centraliser CGθ

(c).
There are sufficient conditions for an automorphism θ ∈ Autm(G) to be saturated,

given in [50]. For example, if m is prime, or φ(m) dim c = rank g (here φ is the
Euler function), or G is classical (SLn(C),SOn(C),Spn(C)) except in the case where
G = SL2k(C), θ is non-inner (as defined in Section 2.2.1) and 4|m, then θ is saturated.

Even if the pair is not saturated, some groups between G0 and Gθ can still result
in the same invariants. For example, if G is simply connected then G0 = Gθ.

A very relevant first example for Vinberg θ-pairs is that related to real forms of
G.

Example 4. A real form of a complex reductive Lie group G is the fixed point
locus of an antiholomorphic involution σ : G → G. For example, if G = GLn(C)
and σ : A 7→ Ā, we get Gσ = GLn(R) as a real form. Let GR be a real form of
G and g be the Lie algebra of G. The theory of Cartan [36, Chapter VI] gives an
involution θ ∈ Aut2(G) which induces a decomposition as a direct sum of vector
spaces, g = h ⊕ m, such that h is the Lie algebra of the complexification H of a
maximal compact subgroup HR ⊆ GR. This yields the Vinberg θ-pair (H,m) from
the real form GR. Note that this is an example for m = 2. These pairs are also called
symmetric pairs.

The following will be one our main examples.
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Example 5. As in the linear quiver representation case of Example 2, we take G =
SLn(C), seen as transformations of some n-dimensional vector space V . We once
again fix a direct sum decomposition in m pieces, V = V0 ⊕ · · · ⊕ Vm−1, where
dimVi = di. Then, we have an order m automorphism θ ∈ Autm(G) defined by
θ(g) = Id0,...,dm−1 · g · I−1

d0,...,dm−1
, where the operator Id0,...,dm−1 ∈ GLn(C) is defined

by Id0,...,dm−1 |Vj ≡ ζj IdVj for ζ ∈ C∗ a primitive m-th root of unity. Then, the Lie
algebra g = slnC gets a Z/mZ grading which is

gk :=

 ⊕
j∈Z/mZ

Hom(Vj , Vj+k)


0

,

where the subscript zero means taking the subspace of traceless endomorphisms, and
again is only meaningful for g0.

The associated Vinberg θ-pair is (G0, g1), where

G0 = S(GLd0(C)× · · · ×GLdm−1(C)),

g1 =
⊕

j∈Z/mZ

Hom(Vj , Vj+1).

The space g1 consists of representations of a quiver with m vertices and arrows
i 7→ i+ 1 for i ∈ Z/mZ (a cyclic quiver) where we put Vi on the i-th vertex:

V0 V1 . . . Vm−1
f0 f1 fm−2

fm−1

.

We will conclude the example by computing a Cartan subspace c ⊆ g1. Assume
without loss of generality that d0 is minimal (otherwise, rotate the pieces Vj). Fix
a splitting Vj = Uj ⊕ Wj of each vector space such that dimUj = d0, and a basis
Bj = {vj1, . . . , v

j
d0
} for each Uj . Consider, for λ = (λ1, . . . , λd0) ∈ Cd0 , the element

fλ = (fλ
0 , . . . , f

λ
m−1) ∈ g1 defined by fλ

j (v
j
k) := λkv

j+1
k , fλ

j |Wj ≡ 0. The collection
c′ := {fλ : λ ∈ Cm} is a d0-dimensional vector subspace of g1 isomorphic to Cd0 .

Moreover, every element fλ ∈ c′ verifies that ad fλ is diagonalizable. In order to
see this, as we are working with a Lie algebra of endomorphisms, it suffices to see
that fλ is diagonalizable (as a consequence of the fact that a Jordan decomposition
for fλ gives a Jordan decomposition for ad fλ, see [36, Section 1.7]). But vk,l :=
v0k+ ζ lv1k+ · · ·+ ζ l(m−1)vm−1

k is an eigenvector with eigenvalue ζ−lλk. These give md0
linearly independent eigenvectors spanning

⊕
j Uj , and outside of that fλ = 0, so fλ

diagonalizes.
Finally, [c′, c′] = 0, because fλfβ − fβfλ = 0, as it is clearly 0 on the Wj , and

given vjk ∈ Uj one has (fλfβ − fβfλ)(vjk) = (λkβk − βkλk)v
j+2
k = 0.

Thus, c′ ⊂ c, where c is a Cartan subspace. Furthermore, it is known [38, Theorem
1] that the invariant polynomial ring C[c]W (c) is generated freely by the coefficients of
the characteristic polynomial of fm−1 ◦ · · · ◦ f0 ∈ End(V0), thus dim c = dimV0 = d0,
hence c′ = c.
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2.2.1. Classification of Z/mZ-gradings

As in the previous section, we will exhibit a classification of the Z/mZ gradings of g via
numberings of some associated diagram, following [27]. We fix a Cartan subalgebra
t ⊆ g, its associated root system ∆ and the simple roots Π = {α1, . . . , αr} ⊆ ∆. By
Proposition 4, a Z/mZ-grading is the same as an order m automorphism θ ∈ Autm(g),
which is semisimple (i.e. diagonalisable) as it acts on gj via multiplication by ζj . We
will first explain the classification of inner semisimple automorphisms of order m,
that is θ ∈ Intm(g) (recall from the end of Section 2.1 that inner automorphisms are
those of the form exp(ad(X)) for some X ∈ g). Note that not every Z/mZ-grading
comes from inner automorphisms.

First, we explain a classification theorem for semisimple elements in Int(g). As g
is semisimple, we can decompose it as a sum of simple Lie algebras. If g′ is one of
those summands, then θ(g′) is another summand (it is a simple subalgebra, and the
only possibility is that it is one of the summands by [36, Theorem 1.54]). Thus the Lie
algebra g splits as a direct sum of θ-invariant subalgebras of the form s = s1⊕· · ·⊕sk
where each si is simple and θ(si) = si+1 (with indices mod k), so we can restrict
our attention to this case. Moreover, θk ∈ Aut(s1), θk is semisimple if and only if θ
is, and the pair (s, θ) is equivalent to the data (s1, θ

k, k). In other words, we have
reduced the problem to that of a simple Lie algebra.

We can then assume that g is simple and θ is a semisimple inner automorphism.
As G := Int(g) is the group of automorphisms of the form exp(adX) for X ∈ g, we
have that the Lie algebra of G is identified with g. Let δ ∈ ∆ be the highest root,
that is, the one verifying that if δ =

∑r
i=1 niαi, the quantity

∑r
i=1 ni is maximal

with respect to other roots. Set α0 := −δ the lowest root. We define the extended
system of simple roots or affine system of simple roots Π′ := {α0, α1, . . . , αr}.
Note that, if we additionally set n0 := 1, we have

∑r
i=0 niαi = 0. Loosely speaking,

these play the role of a barycentric reference system for the roots of g.
Automorphisms of the simple roots Π (that is, isometries of Π with respect to the

dual of the Killing form, equivalently, automorphisms of the Dynkin diagram of g)
can be extended to automorphisms of the affine simple roots Π′, giving the embedding
Aut(Π) ≤ Aut(Π′). One has [27, Section 3.3.6] that Aut(Π′) = Γ ⋊ Aut(Π), where
Γ ⊴ Aut(Π′) is a normal subgroup isomorphic to π1(G) (recall that here G = Int(g),
if G′ is the simply connected group with Lie algebra g, then G = Ad(G′)). The group
Γ acts simply transitively on set of αi that satisfy ni = 1.

Any element x ∈ t is determined by the barycentric coordinates x0 := 1 − δ(x),
xi := αi(x) for i ∈ {1, . . . , r}, which satisfy

∑r
i=0 nixi = 1. We then have the

classification theorem [27, Theorem 3.3.11]:

Theorem 4. Let g be a simple complex Lie algebra. Any inner semisimple automor-
phism of g is, up to conjugation by an element in Int(g), of the form exp(2πix) ∈
Int(g), where x ∈ t has barycentric coordinates x0, . . . , xr satisfying both Re(xi) ≥ 0
and Re(xi) = 0 =⇒ Im(xi) ≥ 0. The automorphisms for x and x′ are conjugate by
an element in Int(g) if and only if the barycentric coordinates of x can be taken to
those of x′ via the action of Γ, and they are conjugate by an element in Aut(g) if and
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only if the barycentric coordinates of x can be taken to those of x′ via the action of
Aut(Π′).

Now, we shall use Theorem 4 to classify inner Z/mZ-gradings (that is, those
given by an inner θ ∈ Intm(g)) up to inner automorphism. As before, we work with g
simple. We can then assume that θ = exp(2πix) for x ∈ t with barycentric coordinates
x0, x1, . . . , xr satisfying the conditions of Theorem 4. We have that θm = Id, so that
xi =

pi
m for non-negative integers pi ∈ Z≥0. Since

∑r
i=0 nixi = 1, we get the relation

r∑
i=0

nipi = m.

Thus, an inner Z/mZ-grading defines a labelling of the affine simple roots Π′ with
non-negative integer labels. Conversely, from such a labelling we can reconstruct the
Z/mZ-grading of g. First, from the labels pi we can retrieve m =

∑r
i=0 nipi. Then,

any root α ∈ ∆ can be represented uniquely as

α =
r∑

i=0

kiαi, 0 ≤ ki ≤ ni,

from which we obtain that gα ⊆ gp for p =
∑r

i=0 kipi. The subalgebra g0, as in the
case of Z-gradings, also contains the Cartan subalgebra t.

Remark 4. If the labels pi have greatest common divisor d, the order of θ is m′ =
m
d so that the Z/mZ-grading is actually coming from a Z/m′Z-grading with labels
p′i =

pi
d .

Then, as in the case of Z-gradings, we have seen that every inner Z/mZ-grading
is, up to inner automorphisms, given by a labelling of an associated diagram called
affine Dynkin diagram of g. The labelled diagram is also sometimes referred to as
Kac diagram. It is the diagram obtained by setting one vertex per αi, connecting
αi and αj if and only if αi + αj ∈ ∆, and letting the multiplicity of the edge be
determined by the angle between them with respect to the dual of the Killing form
(in affine Dynkin diagrams, as opposed to usual Dynkin diagrams, the multiplicity
can go up to 4).

Example 6. We will identify the labelling associated to the cyclic grading in Example
5. First, let us construct the affine Dynkin diagram of the corresponding Lie algebra
which is g = slnC. Start by recalling its (standard) Dynkin diagram:

• • . . . • •.

There are n−1 vertices corresponding, left to right, to the simple roots in the system
Π = {α1, . . . , αn−1}. The highest root is δ = α1 + · · · + αn−1, so the lowest root is
α0 = −α1 − · · · − αn−1. This also means that ni = 1 for all i ∈ {0, . . . , n − 1}. In
the affine Dynkin diagram, the new vertex corresponding to α0 will be connected to
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those αi such that α0 + αi is a root, namely α1 and αn−1. Hence, this is the affine
Dynkin diagram of type An−1:

• • . . . • •

•

.

Its automorphism group is Aut(Π′) = Dn, the dihedral group of 2n elements. As
explained in the general theory, we have Aut(Π′) = Γ ⋊ Aut(Π) for the normal
subgroup Γ ≃ π1(Int(g)) = π1(Ad(SLn(C))) = π1(PSLn(C)) = Z/nZ, which is the
cyclic subgroup that rotates the vertices (also, for n ≥ 3, Aut(Π) = Z/2Z acts by
reflecting the vertices). With the same choices made in Example 3, a similar argument
to the one in that example shows that the simple roots αi for i ≥ 1 are labelled with
a zero, except for the ones at positions of the form

∑k
l=0 dl for k ∈ {0, . . . ,m − 2},

where it is labelled with a one. The lowest root space is gα0 = C · E0, where E0 is
the matrix whose only nonzero entry is at the top right corner (row 1 and column
n). Thus, E0 ∈ Hom(Vm−1, V0) ∈ g1, and it is labelled with a one. For example, the
d0 = 1, d1 = 3, d2 = 2 case results in the following Kac diagram:

•1 •0 •0 •1 •0

•1

.

We check that, as there is a vertex labelled with a one per each choice of k ∈
{0, . . . ,m − 2} as well as in α0, there are m ones, and for all i ∈ {0, . . . , n − 1}
we have ni = 1, so that indeed

∑n−1
i=0 nipi = m.

Not every automorphism of finite order of g is inner. It is known that Out(g) ≃
Aut(Π), that is, the outer automorphism group is the same as the automorphisms of
the Dynkin diagram, and thus Out(g) can have either one, two or three elements (the
latter only in D4 type, corresponding to so(8,C)). We have seen that if θ is trivial in
Out(g), it corresponds to a numbering of the affine Dynkin diagram. If it is the other
element (or the third one in D4), there is an analogous (albeit harder to establish)
correspondence [27, Section 3.3.11], [31, Section X.5] in terms of other kinds of Kac
diagrams. To give an overview, the correspondence works exactly in the same way
but replacing the affine Dynkin diagram of the system of simple roots of g with the
extended Dynkin diagram of a different system, called the system of simple θ-roots
of g, where θ ∈ Out(g) is the desired outer class.

The θ-roots are constructed as follows. Pick s ∈ θ · Aut(g) a semisimple au-
tomorphism. Let T ≤ Aut(g)s be a maximal torus. Then, S := ⟨T, s⟩ ≤ Aut(g)
is a quasitorus, that is, an abelian Lie group whose identity component is a torus
(these are product of a torus and a finite group). If we choose the s given by the
corresponding automorphism of the Dynkin diagram, its order is q ∈ {1, 2, 3} and
S = T × Z/qZ.

As the Lie algebra of Aut(g) is g, S acts on g. The weight space decomposition
for S is the θ-root decomposition, and the θ-roots are the nonzero characters ∆ ⊆
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X(S) = X(T )×Z/qZ. The restriction of the θ-roots to T (except for those restricting
to zero) is called the set of (restricted) real θ-roots, ∆ = ∆|X(T ) \ {0} ⊆ X(T ). This
is a (possibly non-reduced) root system [27, Theorem 3.3.14] and its simple roots are
the desired system of simple θ-roots. The extended simple root system giving rise
to the Kac diagram is obtained by considering the Z/qZ-grading of g induced by s,
taking η to be the highest weight of the representation of the zero-th piece in the first
one, and adding (−η, 1) to the system of simple roots. See also [31, Section X.5] for
a detailed explanation and proof (due to Kac) of the classification in the outer case,
using covering Lie algebras of infinite dimension.

We have listed all Kac diagrams in Table 2.1. The labellings correspond to the
coefficients ni. The white vertex is the extended root, meaning that removing it
results in the Dynkin diagram for the corresponding simple θ-roots. The type refers
to the Dynkin type of the simple θ-root system.

Example 7. Consider g = sl6(C). Recall the conventions for the roots, the Dynkin
diagram and the notation from Example 3. The order two automorphism of the
Dynkin diagram interchanges the root αi with the root α6−i for i ∈ {1, . . . , 5}. This
can be realised by fixing the symmetric bilinear form with matrix

Q =

0 . . . 1
... . . . ...
1 . . . 0

 ,

and considering the Lie algebra involution s : A 7→ −At, where the transpose is
with respect to Q, i.e. a symmetry along the main antidiagonal of the matrix. This
involution gives a non-inner 2-grading g = g0 ⊕ g1, where g0 = so6(C) and g1 =
Sym6(Cn). This is the usual decomposition of a matrix in its skew-symmetric and
symmetric parts with respect to the bilinear symmetric form Q. Using the previous
theory, we can construct a Z/mZ-grading of the same outer class as s for even values
of m. Let us explore the case of m = 4.

The maximal torus T can be taken to be:

T = {diag(λ1, λ2, λ3, λ
−1
3 , λ−1

2 , λ−1
1 ) : λi ∈ C∗} = (C∗)3.

It acts on g by conjugation. The cyclic group Z/2Z also acts on g by the action of s.
The quasitorus is then S = T × Z/2Z. The characters are X(S) = X(T ) × Z/2Z =
Z3 × Z/2Z.

From Table 2.1 we see that the resulting Kac diagram is

•2

•4 •2

◦2

,

where a computation reveals that the root labelled with a 4 can be taken to be the
element α1 := (−1, 1, 0; 0), the other endpoint of the double arrow is α0 := (2, 0, 0; 1)
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Table 2.1: Kac diagrams for simple Lie algebras.

Case Type Diagram

sln(C) (inner) An

•1 . . . •1

◦1

sl2n(C) (non-inner) Cn

•2

•4 . . . •4 •2

◦2
sl2n+1(C) (non-inner) BCn ◦2 •4 . . . •4 •4

so2n+1(C) (inner) Bn

•1

•2 . . . •2 •2

◦1
sp2n(C) (inner) Cn ◦1 •2 . . . •2 •1

so2n(C), n ≥ 2 (inner) Dn

•1 •1

•2 . . . •2

◦1 •1
so2n(C) (non-inner) Bn−1 ◦2 •2 . . . •2 •2
so8(C) (non-inner II) G2 •3 •6 ◦3

e6 (inner) E6

◦1 •2

•1 •2 •3 •2 •1
e6 (non-inner) F4 ◦2 •4 •6 •4 •2

e7 (inner) E7

◦1 •2 •1

•2 •3 •4 •3 •2

e8 (inner) E8

•2 ◦1 •3 •2

•3 •4 •5 •6 •4
f4 (inner) F4 ◦1 •2 •3 •4 •2
g2 (inner) G2 ◦1 •2 •3
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and the remaining simple roots can be taken to be α2 := (0,−1, 1; 0) and α3 :=
(0,−1,−1; 0). We verify that indeed 2α0 + 4α1 + 2α2 + 2α3 = (0, 0, 0; 0). Let us
examine the Z/4Z-grading corresponding to the assignation of the label 1 to α1 and 0
to the remaining vertices. Computing the labels of each θ-root via linear combinations
of the elements in the Kac diagram, we can describe the grading as follows. Given a
matrix A = A0 +A1 ∈ sl6(C), where Ai ∈ gi (recall this is the grading given by s, in
other words, A0 skew-symmetric and A1 symmetric with respect to Q), the following
two diagrams give which parts of A0 and A1, respectively, belong on the i-th piece of
the Z/4Z grading (the entries labelled with a j ̸= i will be zero in an element of gi):

0 3 3 3 3
1 0 0 0 3
1 0 0 0 3
1 0 0 0 3
1 0 0 0 3

1 1 1 1 0

 ,



2 1 1 1 1 0
3 2 2 2 2 1
3 2 2 2 2 1
3 2 2 2 2 1
3 2 2 2 2 1
0 3 3 3 3 2

 .

The grading can be described abstractly as follows: if sl6(C) = sl(V ) for V a 6-
dimensional complex vector space, we fix a splitting V = V−1 ⊕ V1 with dimV−1 = 2,
dimV1 = 4. We fix a non-degenerate bilinear form f on V that splits as a symmetric
bilinear form on V1 and a skew-symmetric bilinear form on V−1. Then the zero-th
piece of the grading are the traceless elements of End(V−1)⊕End(V1) skew-symmetric
with respect to f (that is, the resulting algebra is so(V1) ⊕ sp(V−1)), the first piece
are the A ∈ Hom(V1, V−1)⊕Hom(V−1, V1) with f(Ax, y) + if(x,Ay) = 0, the second
piece are the traceless elements of End(V−1) ⊕ End(V1) which are symmetric with
respect to f and the third piece are the A ∈ Hom(V1, V−1) ⊕ Hom(V−1, V1) with
f(Ax, y) − if(x,Ay) = 0. The corresponding automorphism of the group SL6(C) is
given by g 7→ (gt)−1, where the transpose is with respect to f .

In general, Vinberg [50] gives a description for non-inner Z/mZ-gradings θ of
sln(C) as follows. One has that θ is conjugate to g 7→ (gt)−1, where t is the transpose
with respect to some non-degenerate bilinear form f on Cn. Let a ∈ SLn(C) be
defined by f(x, y) = f(y, ax) (equivalently, by θ2(g) = aga−1). Split Cn =

⊕
λ∈S Vλ

in eigenspaces for a, which can be chosen so that its eigenvalues S are either m
2 -th

roots of unity or m
2 -th roots of −1.

As m is even, let ζ ′ be a primitive m
2 -th root of unity and ζ a primitive m-th root

of unity. Then, the i-th piece of the grading given by θ consists of the traceless linear
operators A ∈ sln(C) such that AVλ ⊆ V(ζ′)iλ and f(Ax, y) + ζif(x,Ay) = 0.

2.2.2. Cyclic gradings associated to Z-gradings

Our main objects of study in the following chapters will be Higgs bundles associated
to cyclic gradings, focusing on the case of Example 5. In order to exploit the theory of
prehomogeneous vector spaces and Z-gradings from Section 2.1 as well, we are going
to see how Z-gradings can be related to Z/mZ-gradings.
Definition 10. Let g be a complex semisimple Lie algebra with a Z-grading. We
define the associated Z/mZ-grading as follows: by Proposition 1, we have a ho-
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momorphism γ : C∗ → Aut(g). Precomposing with the inclusion µm ↪→ C∗ gives a
homomorphism γ′ : µm → Aut(g) which by Proposition 4 is a Z/mZ-grading.

The pieces of the two gradings can be easily related.

Proposition 5. Let g =
⊕

k∈Z gk be a Z-graded complex semisimple Lie algebra.
Then the associated Z/mZ-grading, g =

⊕
j∈Z/mZ ḡj, is given by ḡj :=

⊕
k≡j mod m gk.

Proof. Consider θ ∈ Autm(g) giving the associated cyclic grading, obtained from the
definition above as the image of a primitive root of unity ζ ∈ µm. We then have for
X ∈ gk that θ(X) = ζkX. Thus gk ⊆ ḡk.

Remark 5. Given a Z-graded complex semisimple Lie algebra g, and a positive
integer m ∈ N such that gi = 0 if |i| ≥ m, the associated cyclic grading for this m
has ḡ0 = g0, and ḡi = gi ⊕ gi−m for i ∈ {1, . . . ,m − 1}. Thus, the corresponding
prehomogeneous vector space (G0, g1) (as well as (G0, g1−m)) and the Vinberg θ-pair
(G0, g1 ⊕ g1−m) have the same group G0 and we will use both for some results in the
following chapters.

Thus, we introduce the following definition:

Definition 11. A Z/mZ-grading of a complex semisimple Lie algebra g is said to
be special if it is associated to a Z-grading g =

⊕
i∈Z gi such that gi = 0 whenever

|i| ≥ m. This Z-grading is called a special associated Z-grading.

We list two important examples of special gradings.

Example 8. Let GR ⊆ G be a real form and suppose that the resulting Vinberg
θ-pair (H,m) from Example 4 arises from a special Z-grading g = g−1 ⊕ g0 ⊕ g1, that
is, we have h = g0 and m = g−1⊕g1. These real forms are called of hermitian type,
as they arise naturally in the classification of hermitian symmetric spaces.

Example 9. The Vinberg θ-pair in Example 5 is special, associated to the prehomo-
geneous vector space from Example 2.

Using the classification of cyclic gradings given at the end of the previous section,
we can discuss the cases in which such a grading comes from a Z-grading and, as it
will be a crucial hypothesis for Chapter 4, those in which it is special, so that both
gradings have the same group G0. We work in the inner case.

Applying the same reductions and notation as in previous section, let g be simple
and θ ∈ Intm(g) be an order m semisimple inner automorphism, which by the already
established classification we can take to be θ = exp(2πix) for x ∈ t coming from a
labelling {p0, . . . , pr} of the affine Dynkin diagram with

∑r
i=0 nipi = m. If we obtain

an associated Z-grading for this cyclic grading, we have an associated Z-grading for
any inner cyclic grading, because we can relate it to this one via (inner) automorphism.

Notice that this labelling restricts to a labelling {p1, . . . , pr} of the Dynkin dia-
gram, which gives a Z-grading. Let α ∈ t∗ be a root, and write

α =
r∑

i=0

kiαi, 0 ≤ ki ≤ ni.



2.2 Z/mZ-gradings and Vinberg θ-pairs 21

Then, if we denote by gj the pieces of this Z-grading and by ḡj the pieces of the
starting Z/mZ-grading, we have that gα ⊆ ḡp, with p =

∑r
i=0 kipi. On the other

hand, using that α0 = −
∑r

i=1 niαi, we get that

α =

r∑
i=1

(ki − nik0)αi,

so that gα ⊆ gp′ for p′ =
∑r

i=1(ki − nik0)pi. However, using that m =
∑r

i=0 nipi, we
have

p′ =
r∑

i=1

(ki − nik0)pi =
r∑

i=1

kipi − k0

r∑
i=1

nipi =
r∑

i=1

kipi − k0(m− p0) =

=

r∑
i=0

kipi − k0m = p− k0m.

This means that both labels are congruent mod m, so that the Z-grading induces the
Z/mZ grading (in both cases t is in the 0-th piece). Thus:

Proposition 6. Any inner Z/mZ-grading of a semisimple Lie algebra g is associated
to a Z-grading.

However, the lift obtained above will not be in general special, which is desirable
so that, for example, the group G0 agrees in both the Vinberg C∗-pair and the Vinberg
θ-pair. For this, we need that the index p′ = p− k0m of any root α in the Z-grading
verifies p′ ∈ {1 − m, . . . ,m − 1}. We have, since 0 ≤ ki ≤ ni, that p =

∑r
i=0 kipi

satisfies 0 ≤ p ≤
∑r

i=0 nipi = m, so that −k0m ≤ p′ ≤ (1− k0)m. As k0 ∈ {0, 1}, the
only problematic cases are:

• p′ = −m, in which case k0 = 1, p = 0 and ki = 0 for all i ∈ {1, . . . , r}, which
implies that p0 = 0 (and, conversely, if p0 = 0 the lowest root space sits in the
−m-th piece of the Z-grading).

• p′ = m, in which case k0 = 0 and ki = ni for all i ∈ {1, . . . , r}, which means,
from the fact that m = p′ =

∑r
i=0 kipi =

∑r
i=1 nipi, that p0 = 0 (and, con-

versely, if p0 = 0 the highest root space sits in the m-th piece of the Z-grading).

So, the resulting Z-grading is special if and only if the label p0 of the lowest root is
nonzero. Recall from Theorem 4 that acting on the labels by Γ gives the same cyclic
grading up to conjugation by inner automorphism, and acting by the full automor-
phism group Aut(Π′) of the affine Dynkin diagram gives the same cyclic grading, this
time up to (possibly non-inner) automorphism. If we can take a nonzero label to α0

via this action, we obtain a lifting Z-grading of the desired form, which can be then
translated back to the cyclic grading of the starting labelling via the automorphism.

Thus, we have proven:
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Proposition 7. Suppose that an inner Z/mZ-grading of a semisimple Lie algebra g
is given by a labelling {p0, . . . , pr} of the affine Dynkin diagram corresponding to the
affine simple roots Π′ = {α0, . . . , αr}.

If there exists a non-zero label pi such that αi ∈ Aut(Π′) · α0, then the grading is
special.

Example 10. The cyclic grading of Example 5, whose labelling was showcased in
Example 6, is special as we had already noticed. As the label in the extended root α0

is 1, the lifting Z-grading is the one given by restricting the labelling to the Dynkin
diagram, which is precisely the labelling of Example 3 giving the grading of Example
2, as we observed.

Remark 6. Recall that the subgroup Γ ⊴ Aut(Π′) acts simply transitively on the
set of affine simple roots αi such that ni = 1, which includes α0. Thus, if there is a
root αi with ni = 1 such that pi > 0, there exists a special associated Z-grading.

This remark has as a consequence the following interesting example:

Example 11. Any inner cyclic grading of g = slnC is special. This is because in type
An−1 we have ni = 1 for all i ∈ {0, . . . , n− 1} or, in other words, Γ acts transitively
on the affine Dynkin diagram, as can be noticed in Example 6.

Example 12. Let us showcase an example where Aut(Π′) does not act transitively,
so that Proposition 7 fails. We can look in type Bn, which corresponds to the Lie
algebra so2n+1(C). We can work with the following description. Let

Q :=

1 0 0
0 0 In
0 In 0

 .

This is a symmetric bilinear form, so that so2n+1 = {X ∈ Mat2n+1(C) : QX+XtQ =
0}. These are matrices of the form:

X =

 0 bt −at

a A B
−b C −At

 ,

where Bt = −B and Ct = −C. We can take the Cartan subalgebra t of diagonal
matrices in so2n+1(C). For i ∈ {1, . . . , n} Let ei ∈ t∗ be the linear form that reads
the i-th element of the diagonal of A as in the previous form (that is, the (i + 1)-th
element of the diagonal in X). The simple roots can be taken to be Π = {α1, . . . , αn}
with αi = ei+1 − ei for i ∈ {1, . . . , n− 1} and αn = −en. The roots are ±ei ± ej for
i ̸= j and ±ei. Thus, the only sums of simple roots which are roots are αi+αi+1 and
the Dynkin diagram is:

• • • . . . • • .

The last edge is double because the angle between αn−1 and αn is different (this will
not be relevant for this example; similarly, we have omitted an arrow pointing from
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αn−1 to αn indicating that the former is longer than the latter). The highest root is
−e2− e1, which corresponds to ni = 2 for i ≥ 2, n1 = 1. Thus α0 = e2+ e1, and then
αi + α0 is only a root for i = 2. The affine Dynkin diagram of type Bn is then:

• • • . . . • •

•

.

Its automorphism group (for n ≥ 3) is Aut(Π′) = Z/2Z, acting by swapping α0 and
α1. It equals Γ since Aut(Π) = {1}, and acts transitively on the roots αi with ni = 1,
as expected. Then, if p0 = p1 = 0, we cannot apply Proposition 7. For example,
consider in the case n = 3 the labelling

•0 •1 •1

•0

.

This gives a cyclic grading for m = 2 · 1 + 2 · 1 = 4, summarized in the following
diagram: 

2 2 1 2 2 3
2 0 0 3 0 1
2 0 0 3 0 1
3 1 1 0 1 1
2 0 3 0 0 1
2 0 3 0 0 1
1 3 3 3 3 0


,

interpreted in the following way: gi are the elements of so7C whose entries not labelled
with i in the diagram above are zero (the blank spaces are always zero in so7(C)).
The associated Z-grading given by restriction of the labelling to the Dynkin diagram
is given by the following diagram:

2 2 1 −2 −2 −1
−2 0 0 −1 −4 −3
−2 0 0 −1 −4 −3
−1 1 1 0 −3 −3
2 4 3 0 0 1
2 4 3 0 0 1
1 3 3 −1 −1 0


,

interpreted in the same way. Both diagrams are the same mod 4, so indeed this
Z-grading induces the previous Z/4Z-grading, but we see that this Z-grading has a
smaller 0-th piece than the Z/4Z-grading.





CHAPTER 3

Higgs bundles and their moduli
spaces

3.1. Basics on moduli spaces of Higgs bundles

Higgs bundles were originally introduced by Nigel Hitchin in his seminal paper [34], as
these objects appeared naturally in his study of self-duality equations on a Riemann
surface. From then on, the theory has evolved in multiple directions and connections
with different branches of mathematics have emerged. In this section we introduce the
basics of Higgs bundles with the level of generality that we will need, while illustrating
some of the original motivation with examples throughout.

3.1.1. Main definitions and stability

During this section, we fix a compact Riemann surface X of genus g ≥ 2 and we
denote by KX := T ∗X its canonical line bundle. We start with the definition of a
Higgs bundle associated to a representation [5, Definition 4.1].

Definition 12. Let G be a complex reductive Lie group and ρ : G → GL(V ) a
holomorphic representation. Let L be a line bundle over X. An L-twisted (G,V )-
Higgs pair is a pair (E,φ), where E is a holomorphic principal G-bundle on X, and
φ ∈ H0(X,E(V )⊗ L), where E(V ) := E ×G V is the associated vector bundle to E
via ρ. A (G,V )-Higgs pair is a KX -twisted (G,V )-Higgs pair.

The section φ is usually called Higgs field. By default we will work with (G,V )-
Higgs pairs (that is, KX -twisted), and in the few cases where the twisting line bundle
is different from KX we will explicitely state it. The definition in this level of gener-
ality specializes to give some of the most studied examples.

Example 13. Denote by g the Lie algebra of G. When V = g, and ρ = Ad :
G → GL(g) is the adjoint representation, the resulting pair is known as a G-Higgs
bundle and corresponds to the objects originally studied by Hitchin in [32, 34].
Besides the results about their moduli space that we will see later, we can already
explain a strong reason that motivates the study of these objects. Consider the moduli

25
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space N of stable principal G-bundles on X. By differential geometric means it can
be seen [8] that its tangent space at the isomorphism class of a principal bundle
E is TEN = H1(X,E(g)). Using Serre duality, we get that the cotangent space
is T ∗

EN = H1(X,E(g))∗ = H0(X,E(g) ⊗ KX). Thus, the cotangent bundle T ∗N
consists of G-Higgs bundles. This fact can be used to endow the space of G-Higgs
bundles with a symplectic structure.
Example 14. More concretely, we can take G to be a Lie subgroup of GLn(C)
in the previous example, which allows to see the corresponding G-Higgs bundles
as holomorphic vector bundles with extra structure and an associated section. For
example, if G = GLn(C) then a G-bundle E can be seen as a holomorphic vector
bundle of rank n (by taking E × Cn the associated vector bundle to the standard
representation of GLn(C), so that E is the frame bundle to the resulting vector
bundle). Denoting such bundle by E as well, the Higgs field becomes a section
φ ∈ H0(X,End(E)⊗KX), since g = gln(C) are the endomorphisms of Cn.

Choosing other complex Lie subgroups of GLn(C) implies adding extra structure
to the vector bundle E and imposing extra conditions in the section φ. For example,
if G = SLn(C) are automorphisms with determinant 1, then g = sln(C) are traceless
endomorphisms, and thus the resulting vector bundle has detE = O, and the Higgs
field has trφ = 0. Another example is G = Sp2n(C), for which the vector bundle
E is endowed with a symplectic form Ω : E ⊗ E → O, and the Higgs field verifies
Ω(φv,w) + Ω(v, φw) = 0.
Example 15. Let G be complex reductive and GR ⊆ G a real form, and recall the
associated Vinberg θ-pair (H,m) from Example 4. Higgs bundles associated to this
pair are called GR-Higgs bundles. This is the natural extension of the theory of
Higgs bundles to real reductive groups, studied in [21] (see also the survey [19] and
references therein). We will give some motivation for this definition once we define
the moduli space at the end of the section.
Example 16. As in Example 14, we can see Higgs bundles for real Lie groups in terms
of vector bundles when these groups occur as subgroups of GLn(C). For example,
consider G = GLn(C) and the real form given by the antiholomorphic involution

σ : A 7→ Ip,q(Ā
T )−1Ip,q, where Ip,q =

(
Ip 0
0 −Iq

)
for p+ q = n. This real form is the

unitary group for a hermitian form of signature (p, q) and is denoted by U(p, q). It
consists of the automorphisms A that preserve the hermitian form of signature (p, q)
given by Ip,q. A maximal compact is HR = U(p) × U(q), which embeds in U(p, q)
diagonally. Thus, H = GLp(C)×GLq(C), so h = glp(C)⊕glq(C), i.e. endomorphisms
given by a p×p and a q×q block on the diagonal, and then m is precisely off-diagonal
endomorphisms.

Consequently, in this case a principal H-bundle is a rank n vector bundle E =
V ⊕ W , where V and W are subbundles of ranks p and q respectively, and φ ∈
H0(X,End(E) ⊗ KX) must satisfy the extra property φ(V ) ⊆ W ⊗ KX , φ(W ) ⊆
V ⊗KX (so that the condition of being off-diagonal is met).

Having defined what Higgs bundles are, we want to consider moduli spaces, that
is, the sets of their isomorphism classes, where we understand two (G,V )-Higgs pairs
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(E,φ) and (E′, φ′) to be isomorphic if there is a G-bundle isomorphism f : E → E′

carrying φ to φ′. However, the resulting set of isomorphism classes does not have
good geometric properties (for example, it is not Hausdorff). The solution, given by
Geometric Invariant Theory, is to restrict the attention to certain subset of the set of
all isomorphism classes such that the resulting space has the structure of a manifold
or an algebraic variety. For this we need to define notions of stability for (G,V )-Higgs
pairs. We follow [21, Definition 2.9] and [5, Definition 4.11]. First, we need the notion
of reduction for Higgs pairs.

Definition 13. Let G be a complex reductive Lie group, Ĝ ≤ G a Lie subgroup,
and E a principal G-bundle. A reduction of structure group of E to Ĝ is a
holomorphic section σ ∈ H0(X,E(G/Ĝ)), where E(G/Ĝ) = E ×G G/Ĝ.

Remark 7. The natural map E → E(G/Ĝ) has Ĝ-bundle structure. From the
previous definition, a reduction of the structure group is a map σ : X → E(G/Ĝ).
This means that we can pull back the Ĝ-bundle E on E(G/Ĝ) to get Eσ := σ∗E, a
Ĝ-bundle on X, whence the name reduction of structure group. Moreover, there is
a canonical isomorphism Eσ ×Ĝ G ≃ E. The map Eσ = σ∗E → E induced by the
pullback is injective and gives a holomorphic subvariety Eσ ⊆ E.

Definition 14. Let G be a complex reductive Lie group and ρ : G → GL(V )
a holomorphic representation. Let Ĝ ≤ G be a Lie subgroup and V̂ ⊆ V be a
ρ(Ĝ)-invariant vector subspace. A (G,V )-Higgs pair (E,φ) reduces to a (Ĝ, V̂ )-
Higgs pair if there is a reduction of the structure group σ of E to Ĝ such that
φ ∈ H0(X,Eσ(V̂ )⊗KX) ⊆ H0(X,E(V )⊗KX).

For the definition we use that, since V̂ is ρ(Ĝ)-invariant, we have a restriction
ρ̂ : Ĝ → GL(V̂ ), as well as the fact that, since Eσ ⊆ E and V̂ ⊆ V , there is a well
defined inclusion of vector bundles Eσ(V̂ ) ⊆ E(V ).

Now we set up the definition for stability. Start by fixing a maximal compact
subgroup K ≤ G (not to be confused with the canonical line bundle of X, which we
have intentionally denoted as KX). Let k be its Lie algebra, a real subalgebra of g.
Define for s ∈ ik the spaces

V 0
s = {v ∈ V : ∀t ∈ R, ρ(ets)(v) = v}, Vs = {v ∈ V : ρ(ets)(v) is bounded as t → ∞}.

and the subgroups

Ls = {g ∈ G : Ad(g)(s) = s}, Ps = {g ∈ G : etsge−ts is bounded as t → ∞}.

These subgroups of G correspond to the lie algebras g0s and gs defined for the adjoint
representation. We also define a character χs : gs → C given by χs(x) = B(s, x),
where B is the Killing form on g.

The subgroup Ls acts on V 0
s via ρ: if g ∈ Ls, then Ad(g)(s) = s so that

getsg−1 = ets. Thus, if v ∈ V 0
s , we get ρ(ets)(ρ(g)(v)) = ρ(etsg)(v) = ρ(gets)(v) =

ρ(g)(ρ(ets)(v)) = ρ(g)(v), so that ρ(g)(v) ∈ V 0
s . Similarly, Ps acts on Vs: if g ∈ Ps

then ρ(ets)(ρ(g)(v)) = ρ(etsge−ts)(ρ(ets)(v)), which is bounded as t → ∞ since both
parts in that expression are.
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Let E be a G-bundle and let σ ∈ H0(X,E(G/Ps)) be a reduction of E to Ps. If a
multiple qχs for some q ∈ N lifts to a character χ̃s : Ps → C∗, we define the degree
of the reduction as

degE(σ, s) :=
1

q
deg(Eσ ×χ̃s C∗).

It is also possible to define this quantity when no multiple of the character lifts to
the group, using differential geometric techniques, as follows: given a reduction σ of
E to Ps, there is a further reduction σ′ to Ks := K ∩ Ls, the maximal compact of
Ls. Take a connection A on Eσ′ and consider its curvature FA ∈ Ω2(X,Eσ′(ks)). We
have that χs(FA) ∈ Ω2(X, iR), and the degree is defined as

degE(σ, s) :=
i

2π

∫
X
χs(FA).

We refer to [5, Section 4.2] for more details on this.
Finally, let z be the center of k, so that k = z ⊕ kss, where kss is the semisimple

part. Given the representation ρ : G → GL(V ), let dρ : g → gl(V ) be its differential,
and define

kρ := kss ⊕ ker(dρ|k)⊥,

where the orthogonal is taken in k with respect to the Killing form.
The last ingredient we need is required in order to deal with the possibility of G

being non-connected, which we do not exclude in our definition of reductive. This
follows [22]. Denote by G0 ≤ G the connected component of the identity, meaning
that we have an extension 1 → G0 → G → Γ → 1 where we assume that Γ =
π0(G) is finite. By results of [22], there exists an action θ : Γ → Aut(G0) and
an homomorphism c : Γ × Γ → Z(G0) (which, in terms of group cohomology, is
moreover a cocycle with respect to the action θ), such that G ≃ G0 ×(θ,c) Γ, the
latter subscript meaning that the group operation is given by (g1, γ1) · (g2, γ2) =
(g1θ(γ1)(g2)c(γ1, γ2), γ1γ2). The maximal compact K can also be taken to be Γ-
invariant. Thus it makes sense to consider the fixed points zΓ ⊆ z and kΓ ⊆ k.

We can now define stability.

Definition 15. Fix a parameter α ∈ izΓ. A (G,V )-Higgs pair (E,φ) is:

• α-semistable, if for any element s ∈ ikΓ and reduction σ ∈ H0(X,E(G/Ps))
such that φ ∈ H0(Eσ(Vs)⊗KX), we have degE(σ, s) ≥ B(α, s).

• α-stable, if it is α-semistable and, for any element s ∈ ikΓρ and reduction
σ ∈ H0(X,E(G/Ps)) such that φ ∈ H0(Eσ(Vs) ⊗KX), we have degE(σ, s) >
B(α, s).

• α-polystable, if it is α-semistable and, for the s ∈ ikΓ and σ ∈ H0(X,E(G/Ps))
such that φ ∈ H0(Eσ(Vs)⊗KX) and we have degE(σ, s) = B(α, s), there exists
a reduction σ′ ∈ H0(Eσ(Ps/Ls)) of Eσ to Ls such that φ ∈ H0(Eσ′(V 0

s )⊗KX).
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With this notion, we can now define the moduli space of α-polystable (G,V )-
Higgs pairs over X as the set of isomorphisms classes of α-polystable (G,V )-Higgs
pairs. We denote it by Mα(G,V ). A construction as a geometric space via Geo-
metric Invariant Theory is given by Schmitt in [46]. When α = 0, we simply re-
fer to semistable, polystable and stable Higgs pairs, and denote the moduli space of
polystable bundles as M(G,V ). All the previous definitions of stability are identi-
cal for L-twisted (G,V )-Higgs pairs for an arbitrary line bundle L over X, simply
replacing KX with L when appropriate. The resulting moduli space of α-polystable
L-twisted (G,V )-Higgs pairs will be denoted by Mα

L(G,V ).
Now we will give more details on the moduli spaces for the classical examples

explained above, and some extra reasons for their relevance.

Example 17. For G-Higgs bundles defined in Example 13 and α = 0, the moduli
space of (polystable) G-Higgs bundles, denoted by M(G), is recovered. The original
Geometric Invariant Theory construction of this case was done by Simpson [47]. A
very important property of this space is the nonabelian Hodge correspondence, a
consequence of theorems of Corlette [15], Donaldson [18] and the Hitchin–Kobayashi
correspondence by Hitchin [34] and Simpson [47, 49]. This correspondence states, for
semisimple G, that M(G) is homeomorphic to the G-character variety of the funda-
mental group R+(G) = Hom+(π1(X), G)/G of completely reducible representations
of the fundamental group of X in G up to conjugation by G, and the subset of stable
G-Higgs bundles Ms(G) is homeomorphic to R∗(G) = Hom∗(π1(X), G)/G, the sub-
set of R+(G) corresponding to irreducible representations. For arbitrary reductive G
(not necessarily semisimple), the correspondence still works after possibly replacing
π1(X) with its universal central extension Γ.

The dimension of the smooth part of the resulting M(G) can be studied using the
deformation theory on G-Higgs bundles, see for example Biswas and Ramanan [7]. For
example, for G semisimple, the resulting dimension is dimM(G) = 2 dim(G)(g − 1).

Example 18. The particular case of G ⊆ GLn(C) described in Example 14 has
the advantage that it can be studied in terms of vector bundles, so that a G-Higgs
bundle becomes a pair (E,φ) with E a holomorphic vector bundle of rank n on X,
and φ ∈ H0(X,End(E)⊗KX), with some extra structure on E and extra conditions
on φ depending on the group G. In this setting, the stability conditions become
much simpler: we define the slope of a vector bundle as µ(E) := degE

rankE , and then
(E,φ) is semistable if and only if every proper nonzero vector subbundle F ⊂ E with
φ(F ) ⊆ F ⊗ KX verifies µ(F ) ≤ µ(E), stable if and only if such subbundles verify
µ(F ) < µ(E), and polystable if E factors as a direct sum of φ-invariant subbundles,
all of them stable and with the same slope. The moduli space in the case G = GLn(C)
was constructed initially by Nitsure [41], resulting in a quasi-projective variety whose
smooth locus is the stable subset and has dimension 2 + 2n2(g − 1).

Example 19. For the real forms GR ⊆ G explained in Examples 15 and 16, the
resulting M(GR) for α = 0 is also very relevant, as it allows to generalize [21] the
nonabelian Hodge correspondence to real reductive Lie groups. The correspondence
works in the same way, giving a homeomorphism between M(GR) and R(GR). The
particular case of GR = U(n), where HR = GR and thus H = G = GLn(C) and m = 0
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(so that we always have φ = 0), establishes a correspondence between (poly)stable
holomorphic vector bundles over X and (completely reducible/)irreducible represen-
tations of the universal central extension Γ of π1(X) in the unitary group U(n). This
is a classical theorem of Narasimhan and Seshadri [40].

The resulting moduli spaces for certain real forms have been studied in depth.
For example, the case of U(p, q) in [10], or the case of GLn(R) in [11].

In following chapters we will need to make use of the Hitchin–Kobayashi corre-
spondence mentioned in Example 17 in the case of Higgs pairs associated to a Vinberg
θ-pair (this includes G-Higgs bundles and GR-Higgs bundles). This is a correspon-
dence between polystable pairs and solutions to a gauge-theoretical equation. We
collect here the required ingredients and the statement of the correspondence in our
case. This follows from the general Hitchin–Kobayashi correspondence for a (G,V )-
Higgs pair [21, 22], and we refer to [9, Section 6.4] for an explanation adapted to our
situation.

Let (G0, g1) be a Vinberg θ-pair coming from the complex reductive group G with
Lie algebra g. First we will explain the correspondence for G-Higgs bundles. Let
τ : g → g be an antiholomorphic involution giving a compact real form K ⊆ G (cf.
Example 4) with Lie algebra k. Such involution always exists (see e.g. [36, Theorem
6.11]). Let E be a G-bundle and h ∈ H0(X,E(G/K)) a reduction of the structure
group to K. These reductions are also called metrics (since, if G = GL(n,C),
then K = U(n) and the reduction translates to a usual hermitian metric). As τ
fixes K, we get a well defined involution τ ′h : Eh(g) ⊗ KX → Eh(g) ⊗ KX . Notice
that since KX is the holomorphic cotangent bundle of X, this is an involution of
the space of holomorphic Eh(g)-valued forms on X. Composing with conjugation
of 1-forms gives a map τh : Ω1,0(X,Eh(g)) → Ω0,1(X,Eh(g)). Given an element
φ ∈ Ω1,0(X,Eh(g)) = H0(X,Eh(g) ⊗KX), we have [φ,−τh(φ)] ∈ Ω1,1(X,Eh(k)), as
it is fixed by τh.

On the other hand, a metric h induces a unique compatible connection, called
Chern connection, whose curvature is Fh ∈ Ω1,1(Eh(k)) (see for example [26, Chapter
III] for the vector bundle case). As X is a Riemann surface, it is Kähler and we can
select a Kähler form ω ∈ Ω1,1(X).

Theorem 5 (Hitchin–Kobayashi correspondence for G-Higgs bundles). Let α ∈ izΓ

be a stability parameter. A G-Higgs bundle (E,φ) is α-polystable if and only if there
exists a metric h on E such that the equality

Fh + [φ,−τh(φ)] = −iαω

of elements in Ω1,1(X,Eh(k)) holds.

Note that in the previous theorem we are using that α is in the centre of k and
thus it defines a global section of the associated bundle Eh(k). For the Vinberg θ-pair
case, the statement is similar but the compact involution τ : g → g needs to verify
the extra condition τ(gj) = g−j . This ensures that the maximal compact K0 ≤ G0 is
just G0 ∩K (with Lie algebra k0 = k ∩ g0, the centre of which we denote z0), as well
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as that [φ,−τ(φ)] ∈ Ω1,1(X,Eh(k0)). Such a compact involution exists [51, Theorem
3.72]. We then have

Theorem 6 (Hitchin–Kobayashi correspondence for Higgs pairs associated to Vin-
berg θ-pairs). Let α ∈ izΓ0 be a stability parameter, (G0, g1) a Vinberg θ-pair from
θ ∈ Autm(G) and τ : g → g a compact involution with τ(gi) = g−i. A (G0, g1)-Higgs
pair (E,φ) is α-polystable if and only if there exists a metric h on E such that the
equality

Fh + [φ,−τh(φ)] = −iαω

of elements in Ω1,1(X,Eh(k0)) holds.

We will also need the correspondence for Higgs pairs twisted by an arbitrary line
bundle L over X (cf. Definition 12). The only difference is that we cannot interpret
the involution τ ′h from before as a map between differential forms. However, if we fix
an hermitian metric hL in L we can identify L with L∗. In other words, we now have
τh : Eh(g) ⊗ L → Eh(g) ⊗ L∗. For an element φ ∈ H0(X,Eh(g) ⊗ L), we then have
[φ,−τh(φ)] ∈ H0(X,Eh(k0)). The statement becomes:

Theorem 7 (Hitchin–Kobayashi correspondence for L-twisted Higgs pairs associated
to Vinberg θ-pairs). Let α ∈ izΓ0 be a stability parameter, L a line bundle over X with
a choice of metric hL : L

∼−→ L∗, (G0, g1) a Vinberg θ-pair from θ ∈ Autm(G) and
τ : g → g a compact involution with τ(gi) = g−i. An L-twisted (G0, g1)-Higgs pair
(E,φ) is α-polystable if and only if there exists a metric h on E such that the equality

Fh + [φ,−τh(φ)]ω = −iαω

of elements in Ω1,1(X,Eh(k0)) holds.

3.2. The C∗-action and Higgs bundles associated to Vin-
berg C∗-pairs

Let G be a complex semisimple Lie group with Z-graded Lie algebra g =
⊕

k∈Z gk.
Recall from Section 2.1 that the connected subgroup G0 ≤ G corresponding to g0
is reductive and acts on g1 giving a prehomogeneous vector space (G0, g1). In this
section we will see how (G0, g1)-Higgs pairs arise naturally as fixed points of the action
of the multiplicative group C∗ defined on M(G) by scaling of the Higgs field:

λ · (E,φ) = (E, λφ).

This action is of great importance for understanding the moduli space M(G). For
example, it provides a stratification of the moduli space in affine subvarieties, each
given as the points whose limit when λ → 0 is the same fixed point [30, Sections 2 and
3]. Moreover, under a suitable action with positive weights on the Hitchin base A, the
Hitchin system that will be explored in detail in Chapter 5 becomes C∗-equivariant
and hence fixed points lie inside the fibre h−1(0), which is known to be singular.
Furthermore, by taking limit λ → 0 the moduli space retracts to the fixed points and
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thus the topology of M(G) can be inferred from that of the fixed locus. All of these
are some of the motivations to study the fixed points.

Notice that G0 ≤ G and g1 ⊆ g, so it makes sense to consider whether a G-Higgs
bundle reduces to a Higgs pair for the prehomogeneous vector space (G0, g1) (or,
similarly, to (G0, gk), but we consider only the first piece as explained in Remark 1).
These give fixed points [5, Section 4.1]:

Proposition 8. Let (E,φ) be a G-Higgs bundle that reduces to a (G0, g1)-Higgs pair.
Then, (E, λφ) ≃ (E,φ) for all λ ∈ C∗.

Proof. We will write (E,φ) for the reduced (G0, g1)-Higgs pair and show that it
is fixed by C∗. The result for the original (E,φ) will then follow by extending the
structure group (i.e. viewing E as a G-bundle and using the inclusion E(g1) ⊆ E(g)).
Let ζ ∈ g0 be a grading element (cf. Proposition 2). Let g := exp(tζ) ∈ G0 for some
t ∈ C. The action of G0 on the G0-bundle E gives a holomorphic automorphism
fg ∈ Aut(E) by the rule e 7→ eg. This automorphism turns [(e, v)] ∈ E(g1) into
[(eg, v)] = [(e, gv)]. Now, gv = Ad(exp(tζ))(v) = exp(ad(tζ))(v) = exp(t)v, where
we used that ad(ζ)(v) = v by definition of the grading element. Thus, we obtain via
applying fg that (E,φ) ≃ (E, exp(t)φ). Since t ∈ C was arbitrary, the proposition
follows.

In fact, Simpson proved that the converse is also true [49], meaning that every
fixed point reduces to a (G0, gk)-Higgs pair. We will give an argument [30, Section
3.1] for classical groups using the vector bundle interpretation of G-Higgs bundles in
that case, explained in Example 14. Suppose that (E,φ) ≃ (E, λφ) for all λ ∈ C∗,
where E is a rank n vector bundle and φ ∈ H0(X,End(E)⊗KX). This means that
we have automorphisms fλ ∈ Aut(E) satisfying the diagram

E E

E ⊗KX E ⊗K

fλ

fλ

λφ φ

This is, in particular, a C∗-action on each fibre of E, which allows to decompose
E|x = E0|x ⊕ · · · ⊕ Ek−1|x in weight spaces (that is, there is some wj ∈ Z such that
fλ(v) = λwjv for v ∈ Ej |x). Globally, this gives a decomposition E = E0 ⊕ · · · ⊕
Ek−1 as a direct sum of subbundles. Now, given v ∈ Ej we have that fλ(φ(v)) =
λ−1φ(fλ(v)) = λwj−1φ(v). If we assume (by reordering the indices) that the largest
weight is w0 and wj = w0−j, we get that φ(Ej) ⊆ Ej+1⊗KX . Thus, we have obtained
that the pair (E,φ) is precisely a Higgs pair for the prehomogeneous vector space
(G0, g1) in Example 2. (This is clear, at least, when G = SLn(C). For other classical
groups the reasoning here is the same and Example 2 can be modified accordingly
by adding extra structure to the vector spaces and considering quiver representations
respecting said structure).
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3.3. Cyclic Higgs bundles as Higgs bundles associated to
Vinberg θ-pairs

Let G be a semisimple complex Lie group with Lie algebra g and θ ∈ Autm(G) an
automorphism of order m. Recall from Section 2.2 that this gives a Z/mZ-grading
g =

⊕
k∈Z/mZ gk. In this section we will explain how Higgs pairs associated to the

Vinberg θ-pair (G0, g1) arise as fixed points of cyclic group actions in M(G). We
follow [25, 20].

The cyclic group µm = {z ∈ C∗ : zm = 1} acts in the moduli space M(G) as
follows. On one hand, we can act on a principal G-bundle E through the order
m automorphism of G, via the rule E 7→ θ(E) := E ×θ G. A Higgs field φ ∈
H0(X,E(g) ⊗ KX) gets sent to θ(φ) ∈ H0(X, θ(E)(g) ⊗ KX). On the other hand,
fixing a primitive m-th root of unity ζ ∈ µm, we can scale the Higgs field using ζ as
in the previous section. The resulting action of µm is

ζj · (E,φ) = (θj(E), ζjθj(φ)).

Recall that G0 ≤ G is the connected subgroup corresponding to g0. The fixed point
subgroup Gθ contains G0 as the connected component of the identity, and we can
also consider the pair (Gθ, g1), sometimes referred to as an extended Vinberg θ-pair,
as it keeps the relevant properties of Vinberg θ-pairs discussed in Section 2.2. The
map taking a (Gθ, g1)-Higgs pair (E,φ) to a G-Higgs bundle (E×Gθ G,φ) (using the
fact that g1 ⊆ g) defines a map of moduli spaces

M(Gθ, g1) → M(G),

whose image is contained in the fixed point locus M(G)µm by the action described
above.

Remark 8. When G is simply connected, such as in the case G = SLn(C) of Example
5, the fixed point locus Gθ is connected and thus G0 = Gθ. Otherwise, if we want to
work with the Vinberg θ-pair (G0, g1), we can use again the extension of structure
group (E,φ) 7→ (E ×G0 G

θ, φ) to get a map M(G0, g1) → M(Gθ, g1) → M(G) with
image contained in the fixed point locus of the µm action.

Remark 9. The map M(Gθ, g1) → M(G) does not surject onto the fixed point
locus in general, as there is a set of automorphisms which are equivalent, in a sense,
to θ, so that each associated M(Gθ′ , g′1) also maps to the fixed point locus. If one
considers the images corresponding to each associated automorphism, they do cover
the smooth locus of M(G)µm . All these aspects about fixed point loci of finite order
automorphisms in moduli spaces of G-Higgs bundles are studied in [25].

The elements in the image of M(Gθ, g1) in M(G) have been called cyclic G-
Higgs bundles in the literature. The automorphism is sometimes made explicit by
referring to these pairs as θ-cyclic G-Higgs bundles.

Example 20. In the particular case where θ is an inner automorphism, that is, one
of the form x 7→ gxg−1 for some g ∈ G, we get that (θ(E), θ(φ)) ≃ (E,φ), so that the
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action of µm is just (E,φ) 7→ (E, ζφ). This is the case of the automorphism considered
in Example 5 given by cyclic quiver representations. A Higgs pair for the pair (G0, g1)
in this cyclic quiver case can be seen (in terms of vector bundles, using the fact that
G ⊆ GLn(C), as in Example 14) as a holomorphic vector bundle E = E0⊕· · ·⊕Em−1

with trivial determinant, and a traceless section φ ∈ H0(X,End(E)⊗KX) such that
φ(Ek) ⊆ Ek+1 ⊗ KX , with indices taken in Z/mZ. Note that the case of SU(p, q)-
Higgs bundles, defined in a similar way to Example 16, corresponds to the situation
of m = 2, that is, points with (E,φ) ≃ (E,−φ).



CHAPTER 4

The Toledo invariant

4.1. Toledo invariant for cyclic Higgs bundles coming
from a Z-grading

Throughout this section we work in the setting of special cyclic gradings, which we
now recall. Consider a semisimple complex Lie group G with Lie algebra g which has
a Z-grading g =

⊕
k∈Z gk with grading element ζ ∈ g0. We take an integer m ≥ 2 such

that gi = 0 for |i| ≥ m, and consider the associated Z/mZ-grading g =
⊕

k∈Z/mZ ḡk,
where, for k ∈ {1, . . . ,m − 1}, we have ḡk = gk ⊕ gk−m, and ḡ0 = g0. We also
suppose that this associated grading comes from some θ ∈ Autm(G) as explained in
Section 2.2. In particular, the discussions will apply for Higgs pairs associated to
cyclic quivers (Example 5), as well as for GR-Higgs bundles when GR is of Hermitian
type (Example 8).

Let B be an invariant bilinear form on g (such as the Killing form) and let t ⊆ g
be a Cartan subalgebra. Then, B|t×t is positive definite and we get a dual form B∗

on t∗. Let γ ∈ t be the longest root such that a conjugate of the root space gγ belongs
to g1 (each Z-grading of a Lie algebra g can be conjugated so that the graded pieces
gi are direct sums of root spaces, as explained in Section 2.1.1).

Definition 16. The Toledo character χT : g0 → C is defined by

χT (x) = B(ζ, x)B∗(γ, γ).

This is indeed a character, as B(ζ, [x, y]) = −B([x, ζ], y) = B(0, y) = 0. The
constant factor B∗(γ, γ) ensures that the definition does not depend on the choice of
invariant bilinear form.

Now let E be a principal G0-bundle. As in the definition of stability of Higgs
pairs in section 3.1, we can define the degree of E associated to χT by selecting q ∈ N
such that qχT lifts to a character χ̃ : G0 → C∗, and setting

degχT
(E) :=

1

q
deg(E ×χ̃ C∗).

If no such q exists, the degree can still be defined via differential geometric techniques
as explained in section 3.1 and detailed in [5, Section 4.2].

35
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Definition 17. Let (E,φ) be a (G0, ḡ1)-Higgs pair. We define the Toledo invariant
of (E,φ) by

τ(E,φ) := degχT
(E).

Remark 10. The invariant has been defined by using the prehomogeneous vector
space (G0, g1). However, since the Higgs field takes values in g1 ⊕ g1−m, it makes
sense to consider what happens if we try to use instead the prehomogeneous vector
space (G0, g1−m). Recall from Remark 1 that this space is of the form (G0, g

′
1) for

the graded subalgebra g′ = g0 ⊕ g1−m ⊕ gm−1. The corresponding grading element
here is ζ ′ = ζ

1−m . We also need to select a new longest root γ′, now with the
condition that (a conjugate of) the root space gγ′ belongs in g1−m. Thus, the new
Toledo character is χ′

T (x) = B(ζ ′, x)B∗(γ′, γ′) = 1
1−m

B∗(γ′,γ′)
B∗(γ,γ) χT (x). Consequently,

we obtain an alternative Toledo invariant

τ ′(E,φ) :=
1

1−m

B∗(γ′, γ′)

B∗(γ, γ)
τ(E,φ).

Notice that the signs of τ and τ ′ differ.

Example 21. We will compute the value of the Toledo invariant for the (G0, ḡ1)-
Higgs pair corresponding to the Vinberg θ-pair of Example 5. As explained in Exam-
ple 20, these can be seen as vector bundles E = E0 ⊕ · · · ⊕ Em−1 with a Higgs field
φ ∈ H0(X,End(E)⊗KX) such that φ(Ek) ⊆ Ek+1⊗KX , the indices taken in Z/mZ.
We first compute the Toledo character. Recall that in this case the grading element
for the prehomogeneous vector space (G0, g1), using the notation of Example 2, is
ζ ∈ g0 = (

⊕m−1
j=0 End(Vj))0 given by ζ|Vj = (j − α) Id |Vj . In SLn(C) we can choose

the invariant form B(X,Y ) = tr(XY ). All the roots of SLn(C) have the same length,
which is 2 under this invariant form. Thus, we get, for x = (f0, . . . , fm−1) ∈ g0, that

χT (x) = B(ζ, x)B∗(γ, γ) = 2
m−1∑
j=0

(j − α) tr(fj).

A multiple qχT lifts to a character of the group G0 if 2q(α − j) is integral for all
j ∈ {0, . . . ,m− 1}, resulting in

χ̃(g) =

m−1∏
j=0

det(gj)
2q(j−α),

for g = (g0, . . . , gm−1) ∈ G0. Such q exists as α is rational. Then, we have the line
bundle

E ×χ̃ C∗ =

m−1⊗
j=0

det(E)⊗2q(j−α),

so that, finally,

τ(E,φ) =
1

q
deg(E ×χ̃ C∗) = 2

m−1∑
j=0

(j − α) degEj .
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The value of α, if explicitly computed, results in α =
∑m−1

j=0 jdj∑m−1
j=0 dj

, and we have that
dj = rankEj , so we see that the resulting invariant depends on the degrees and ranks
of each piece Ej .

The case of m = 2 corresponds to SU(p, q)-Higgs bundles defined as in Example
16. If we let (p, q) and (a, b) be the ranks and degrees, respectively, of each of the two
pieces E0 and E1, the previous formula reads

τ(E,φ) = 2
pb− qa

p+ q
,

which is the Toledo invariant for SU(p, q)-Higgs bundles defined in [10]. Notice
that working with SU(p, q) (instead of U(p, q)) imposes the additional restriction
deg(E0) = −deg(E1), so we can substitute b = −a in order to obtain a simplified
expression for the invariant. Similarly, for larger values of m we can use the constraint∑m−1

j=0 degEj = 0 to obtain an expression with one parameter less.

4.2. The Arakelov–Milnor–Wood inequality

The goal of this section is to show that the Toledo invariant is bounded on the moduli
space Mα(G0, ḡ1), generalizing the existing inequalities for the Toledo invariant in the
particular cases explained at the beginning of the chapter. We will use the fact that
we are working with a Vinberg θ-pair which relates to the prehomogeneous vector
spaces (G0, g1) and (G0, g1−m) in order exploit some tools from the theory of these
spaces. Before the main theorem, we will first need some definitions as well as further
results about prehomogeneous vector spaces. We begin by associating a number to
each element of g1 depending on its orbit.

Definition 18. Let e ∈ g1 and (h, e, f) a sl2-triple with h ∈ g0 (cf. Proposition 3).
We define the Toledo rank of e by

rankT (e) :=
1

2
χT (h).

This number is indeed independent of the representative of a given G0-orbit: if
e, e′ ∈ g1 belong to the same orbit and h, h′ are the corresponding elements in g0,
by [5, Proposition 2.19] we get that there exists g ∈ G0 such that Adg h = h′.
Then, by Ad-invariance of B as well as the fact that Adg ζ = ζ, we have χT (h) =
B(ζ, h)B∗(γ, γ) = B(Adg ζ,Adg h)B

∗(γ, γ) = χT (h
′). Moreover, by [5, Proposition

3.16], if e′ ∈ Ω is an element of the open orbit, we have

0 ≤ rankT (e) ≤ rankT (e
′),

with the second inequality becoming an equality if and only if e ∈ Ω. In other words,
the maximum value of the rank is given precisely by elements of the open orbit.

Definition 19. We define the Toledo rank of (G0, g1) to be rankT (G0, g1) :=
rankT (e) for any e ∈ Ω.
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Definition 20. Let ρ : G → GL(V ) be a prehomogeneous vector space and χ : G →
C∗ a character. A non-constant rational function F : V → C is called a relative
invariant for χ if, for all g ∈ G and v ∈ V , we have

F (ρ(g) · v) = χ(g)F (v).

We have the following lemma [5, Proposition 2.8] that guarantees the existence of
a relative invariant.

Lemma 1. Suppose that (G0, g1) is JM-regular. Then, there exists q ∈ N such
that qχT lifts to a character χ̃T : G0 → C∗ having a relative invariant F of degree
q rankT (G0, g1).

Proof. Take e ∈ Ω ⊆ g1 and complete it to an sl2-triple (2ζ, e, f) by JM-regularity.
Consider its stabilizer Ge

0 ⊆ G0 with Lie algebra ge0 ⊆ g0. For x ∈ ge0 we have
χT (x) = B(ζ, x)B∗(γ, γ) = 1

2B([e, f ], x)B∗(γ, γ) = −1
2 B(f, [e, x])B∗(γ, γ) = 0. This

means that some qχT lifts to the connected component of the identity of Ge
0 as the

trivial character, and since Ge
0 has finitely many components, we can choose q so

that qχT lifts to a character χ̃T of G0 with χ̃|Ge
0
= 1. By [43, Proposition 19], this

is a sufficient condition for the existence of a relative invariant F : G0 → C∗, and
F (e) ̸= 0 since otherwise F ≡ 0 by density of Ω. Relative invariants are homogeneous
functions by [43, Proposition 3], so we can obtain the degree by letting t ∈ C and
computing

F (exp(t)e) = F (Ad(exp(tζ))(e)) = χ̃T (exp(tζ))F (e) = exp(tqB(ζ, ζ)B∗(γ, γ))F (e),

so that the degree is qB(ζ, ζ)B∗(γ, γ) = q rankT (G0, g1).
The previous result needs a JM-regular space, but we will be able to apply it in

general by starting from an arbitrary prehomogeneous vector space (G0, g1) and an
element e ∈ g1, and obtaining a JM-regular prehomogeneous vector subspace (Ĝ0, ĝ1)
such that e ∈ Ω̂ ⊆ ĝ1 where Ω̂ is the open orbit. The construction is as follows. Take
an sl2-triple (h, e, f) with h ∈ g0 and f ∈ g−1 using Proposition 3. By the theory of
sl2-representations, in particular [36, Corollary 1.72], ad(h) diagonalizes with integer
eigenvalues, so we have another Z-grading g =

⊕
k∈Z g̃k given by the eigenspaces.

Define
ĝk := gk ∩ g̃2k,

yielding the subalgebra ĝ =
⊕

k∈Z ĝk.
Note that since [h, ζ] = 0 we have h, ζ ∈ ĝ0, and since 1

2 [h, e] = [ζ, e] = 1 we also
have e ∈ ĝ1. Also, ĝ is precisely the subalgebra of elements where ζ and h

2 coincide,
that is, the stabilizer of s := ζ − h

2 in ĝ. If Ĝ0 ⊆ G0 is the centralizer of h in G0

(equivalently, the centralizer of s), then (Ĝ0, ĝ1) is a prehomogeneous vector subspace
of (G0, g1) which is JM-regular and e ∈ Ω̂ ⊆ ĝ1, the latter by Malcev–Kostant theorem
[36, Theorem 10.10].

Definition 21. Given e ∈ g1, the prehomogeneous vector subspace (Ĝ0, ĝ1) of
(G0, g1) constructed above is called a maximal JM-regular prehomogeneous
vector subspace for e.
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We will need the following lemma about sl2-representations.

Lemma 2. Let (h, e, f) be an sl2-triple in g. Let k ∈ N such that ad(e)k = 0. Then
ad(h) is diagonalizable and the eigenvalues of ad(h) are integers in {−k+1, . . . , k−1}.

Proof. By [36, Theorem 1.67] we have that g decomposes as a direct sum of irreducible
sl2-representations, so we can work with an irreducible representation g′ ⊆ g. Then,
by [36, Theorem 1.66] we have a basis {v0, . . . , vn} ⊆ g′ such that ad(e)(vi) = i(n−i+
1)vi−1. This means that ad(e)n(vn) = nv0 ̸= 0, and ad(e)n+1 = 0, so that k ≥ n+ 1.
From the same description we have ad(h)(vi) = (n − 2i)vi. Thus, the eigenvalues of
ad(h) are in {−n, . . . , n} ⊆ {−k + 1, . . . , k − 1}.

Recall that the Higgs field φ of a (G0, ḡ1)-Higgs pair is a holomorphic section
of the vector bundle E(ḡ1) ⊗ KX = E(g1 ⊕ g1−m) ⊗ KX . By projecting to the g1
and g1−m factors, respectively, we get φ+ ∈ H0(X,E(g1)), φ− ∈ H0(X,E(g1−m))
with φ+ + φ− = φ. Notice that (E,φ+) and (E,φ−) are Higgs pairs associated
to the prehomogeneous vector spaces (G0, g1) and (G0, g1−m), respectively. Define
rankT (φ

+) := rankT (φ
+(x)) for a generic x ∈ X, and similarly for rankT (φ

−) (this
latter defined within the prehomogeneous vector space (G0, g1−m), meaning that in
the computation the grading has to be changed first as in Remark 10). Now we are
ready to state and prove the bounds for the Toledo invariant.

Theorem 8 (Arakelov–Milnor–Wood inequality). Let G be a complex semisimple
Lie group, m ∈ N and θ ∈ Autm(G). Suppose that the induced Z/mZ-grading, g =⊕

k∈Z/mZ ḡk, coincides with the associated to a special Z-grading g =
⊕m−1

k=−m+1 gk
with grading element ζ ∈ g0, that is, the relation ḡk = gk ⊕ gk−m holds for k ∈
{1, . . . ,m− 1} and ḡ0 = g0. Let G0 ≤ G be the connected subgroup corresponding to
g0 and α := λζ for λ ∈ R. Let γ be the longest root such that a conjugate of the root
space gγ is contained in g1.

Then, if (E,φ) is an α-semistable (G0, ḡ1)-Higgs pair, the Toledo invariant τ(E,φ)
satisfies the inequality

−τL ≤ τ(E,φ),

where

τL = rankT (φ
+)(2g − 2) + λ(B∗(γ, γ)B(ζ, ζ)− rankT (φ

+)).

Moreover, if m = 2 or φ− = 0, the upper bound

τ(E,φ) ≤ τU ,

where
τU = rankT (φ

−)(2g − 2) + λ(B∗(γ, γ)B(ζ, ζ)− rankT (φ
−)),

also holds.

Proof. Let e ∈ g1 be an element in the orbit where φ+ takes values generically
and consider the associated sl2-triple (h, e, f) with h ∈ g0 given by Proposition 3.
Let (Ĝ0, ĝ1) be the maximal JM-regular prehomogeneous vector subspace for e from
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Definition 21. In the following we will argue using the semistability of (E,φ), for the
related definitions we refer to Section 3.1. Let s := ζ − h

2 and consider the associated
parabolic Lie algebra g0,s ⊆ g0 of the parabolic subgroup P0,s ≤ G0 (the subscripts 0
are due to the group being G0 and should not be confused with a superscript 0). We
have a reduction σ ∈ H0(E(G0/P0,s)): first, it is well defined over the x ∈ X where
φ+(x) is in the orbit of e (as P0,s is constructed from this value e), and since this
happens generically, the section extends to X. Notice that the Toledo character can
be split

χT (x) = B∗(γ, γ)(B(
h

2
, x) +B(s, x)),

so that, multiplying by an appropriate q ∈ N, lifting to χ̃T of the group, applying
to the reduction Eσ, taking degree and dividing by q (the usual steps from previous
definitions) we get:

(4.1) τ(E,φ) = degE(σ,B∗(γ, γ)s) + degχ̂T
(Eσ),

where the rightmost term is the one corresponding to the character χ̂T : x 7→
B∗(γ, γ)B(h2 , x).

Now we will get bounds for both of these terms. The Levi factor L0,s of P0,s

is the centralizer of s and thus it is Ĝ0. This means that the P0,s-bundle Eσ can
be further reduced by projecting to the Levi factor, obtaining Eσ(Ĝ0) a Ĝ0-bundle
with φ+ ∈ H0(Eσ(Ĝ0)(ĝ1) ⊗ KX) (and still φ− ∈ H0(Eσ(Ĝ0)(g1−m) ⊗ KX)). Let
F : ĝ1 → C be the relative invariant of Lemma 1 corresponding to the lift χ̂T,q of
the character qχ̂T . Notice that its degree is q rankT (Ĝ0, ĝ1) = qχ̂T (

h
2 ). The relative

invariant does not vanish at the open orbit Ω̂ (or else F ≡ 0), and φ+ is generically
in that orbit, so F (φ+) is a nonzero section of the line bundle Eσ(χ̂T,q) ⊗K

qχ̂T (h
2
)

X .
This means that the degree of this line bundle is non-negative, namely

(4.2) degχ̂T
(Eσ) =

1

q
deg(Eσ(χ̂T,q)) ≥ −χ̂T

(
h

2

)
(2g − 2),

yielding a bound for one of the terms.
For the other term we use the α-semistability. On one hand, [s, ĝ1] = 0 by

definition, so φ+ ∈ H0(Eσ(ĝ1,s) ⊗ KX) ⊆ H0(Eσ(ĝ1) ⊗ KX). On the other hand,
we also have g1−m ⊆ g1−m,s. In order to see this, take x ∈ g1−m and decompose it
in ad(h2 )-eigenvectors x =

∑
j xj with xj ∈ g1−m corresponding to the eigenvalue j.

This is possible by Lemma 2, together with the fact that g1−m is ad(h2 )-invariant.
From the same lemma we have j ∈ {1−m, 1−2m

2 , . . . , 2m−1
2 ,m− 1}. Thus,

[s, xj ] = [ζ − h

2
, xj ] = (1−m− j)xj .

Since 1 −m ≤ j ≤ m − 1, we have that λj := (1 −m − j) ≤ 0. Thus Ad(ets)(xj) =
exp(ad(ts))(xj) = etλjxj is bounded as t → ∞, and hence x ∈ g1−m,s. In other words,
we have seen that φ− ∈ H0(Eσ(g1−m,s)⊗KX) and thus φ ∈ H0(Eσ(ḡ1,s)⊗KX). We
can then apply the definition of α-semistability to get

(4.3) degE(σ,B∗(γ, γ)s) ≥ B(λζ,B∗(γ, γ)s).
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Combining equations (4.1), (4.2) and (4.3) results in

τ(E,φ) ≥ −χ̂T

(
h

2

)
(2g − 2) + λB∗(γ, γ)B(ζ, s).

What remains is just to rewrite −χ̂T (
h
2 ) = B∗(γ, γ)B(h2 ,

h
2 ) = B∗(γ, γ)(B(ζ, h2 ) +

B(s, h2 )) = B∗(γ, γ)(B(ζ, h2 ) + 0) = rankT (φ
+), as well as

λB∗(γ, γ)B(ζ, s) = λ(B∗(γ, γ)B(ζ, ζ)−B∗(γ, γ)B(ζ,
h

2
)) =

= λ(B∗(γ, γ)B(ζ, ζ)− rankT (φ
+)).

The upper bound is proven by replicating the argument with the prehomogeneous
vector space (G0, g1−m) instead of (G0, g1). This yields a lower bound for the Toledo
invariant τ ′ of Remark 10, which is related to τ by a negative constant and hence
provides an upper bound for τ . In order for the argument to work with (G0, g1−m),
it is essential that the Z-grading corresponding to this prehomogeneous vector space,
which is the one given by 1

1−mζ, also induces the Vinberg θ-pair (G0, ḡ1). This
happens when m = 2, in which case we also have that τ ′ = −τ . If this is not the case,
the only part of the argument that no longer works is the one using semistability, as
it could be the case that φ+ /∈ H0(Eσ(g1,s) ⊗KX). The φ− = 0 case is established
in [5, Theorem 5.3].

Remark 11. The previous bound applies for α-semistable pairs, so that in particular
it holds in the moduli spaces Mα(G0, ḡ1) of polystable elements. Moreover, the
statement works for any stability parameter α which is a real multiple of the grading
element. In the specially interesting particular case of α = 0, we get that for any
(G0, ḡ1)-semistable Higgs pair (E,φ) (in particular, for elements of M(G0, ḡ1)) the
following inequality is satisfied:

−(2g − 2) rankT (φ
+) ≤ τ(E,φ).

By using the fact that rankT (φ+) ≤ rankT (G0, g1), a (coarser) bound independent of
the specific element is achieved:

−(2g − 2) rankT (G0, g1) ≤ τ(E,φ).

Remark 12. In the case of (G0, g1)-Higgs pairs (recall from Section 3.2 that these
arise as fixed points of a C∗-action in the G-Higgs bundle moduli space) we can make
the same definitions and, using the fact that an α-(semi,poly)stable (G0, g1)-Higgs
pair is also α-(semi,poly)stable as a (G0, ḡ1)-Higgs pair, we obtain the same bound
for the Toledo invariant. This is the result presented in [5].

Remark 13. For moduli spaces of GR-Higgs bundles, where GR ⊆ G is a real form
of Hermitian type (in other words, for the case m = 2 in our framework), the corre-
sponding Z-grading still induces the Vinberg θ-pair (G0, ḡ1) and we obtain the upper
bound of Theorem 8. For α = 0 this results in an upper bound

τ(E,φ) ≤ (2g − 2) rankT (φ
−),
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as well as combined coarser bound independent of the specific element

|τ(E,φ)| ≤ (2g − 2) rank(G0, g1).

This is the result presented in [6] generalizing previous specializations such as [10]
for GR = SU(p, q).

Example 22. As a first example we derive the bound for SU(p, q)-Higgs bundles
(recall that this is the case of Higgs pairs associated to the Vinberg θ-pair in Example 5
when m = 2). We will assume with no loss of generality that p ≤ q. The corresponding
prehomogeneous vector space (G0, g1) is the one in Example 2 for m = 2. A SU(p, q)-
Higgs bundle can then be seen in terms of vector bundles (cf. Example 20) as a
pair (E,φ) where E = E0 ⊕ E1 is a direct sum of holomorphic vector bundles over
X with detE ≃ O, rankE0 = p, rankE1 = q (we will also denote degE0 = a,
degE1 = b = −a), and φ : E → E ⊗ KX is a traceless holomorphic vector bundle
homomorphism with φ(E0) ⊆ E1 ⊗KX and φ(E1) ⊆ E0 ⊗KX . The corresponding
φ+ : E0 → E1 ⊗KX is the restriction.

In order to compute the Toledo rank, we can first look at an element e ∈ g1. Recall
from Example 2 that this is a linear map from V0 to V1 and its orbit consists of all such
maps with coinciding rank, which we denote as r ∈ {0, . . . , p}. For example, we can

take the representative given by
(
Idr
0

)
in some fixed basis. The corresponding h ∈

g0 = (End(V0)⊕End(V1))0 from Jacobson–Morozov has matrix


− Idr 0 0 0
0 0 0 0
0 0 Idr 0
0 0 0 0


with respect to the same basis. Using the expression for the Toledo character of
Example 21, this means that χT (h) = −2α · (−r) + 2(1− α)r = 2r, so that

rankT (e) =
1

2
χT (h) = r,

showing that in this example the Toledo rank matches the usual rank of a linear map.
Thus, the Arakelov–Milnor–Wood inequality reads

− rank(φ+)(2g − 2) ≤ 2
pb− qa

p+ q
≤ rank(φ−)(2g − 2),

where rank means the usual rank of a vector bundle homomorphism. The coarse
version is 2

∣∣∣pb−qa
p+q

∣∣∣ ≤ p(2g − 2). Both of these were obtained in [10, Lemma 3.24,
Remark 3.29] using vector bundle techniques, which we will now explain as a preamble
for the next example.

First, we have from [10, Remark 3.8] that the stability conditions for SU(p, q)-
Higgs bundles in terms of vector bundles are the same as those for classical complex
groups explained in Example 18. Suppose that (E,φ) is semistable. If φ+ = 0 then
E0 is φ-invariant and thus µ(E0) ≤ µ(E). Otherwise, let N := ker(φ+) ⊆ E0 and I :=
Im(φ+)⊗K−1

X ⊆ E1. The first isomorphism theorem gives that rank(N)+rank(I) = p
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as well as that φ+ defines a nonzero section of det((E0/N)∗ ⊗ I ⊗KX), so the degree
of that line bundle is non-negative, namely

deg(N) + deg(I) + rank(I)(2g − 2) ≥ deg(E0).

Now, N and E0 ⊕ I are both φ-invariant, so µ(N) ≤ µ(E) and µ(E0 ⊕ I) ≤ µ(E).
Combining all these and rearranging results in

p(µ(E0)− µ(E)) ≤ rank(I)(g − 1) = rank(φ+)(g − 1).

As remarked at the beginning of the argument, if φ+ = 0 the above inequality still
holds, and it is precisely the Arakelov–Milnor–Wood inequality.

Example 23. In the case of Higgs pairs associated to the Vinberg θ-pair given in
Example 5 of cyclic quiver representations, it is possible to argue in a similar way
to previous example, albeit the computations are more cumbersome. Suppose that
(E,φ) is such a Higgs pair, seen in terms of vector bundles as described in Example
20. The orbit of an element e = (e0, . . . , em−2) ∈ g1 is given by all other elements
(e′0, . . . , e

′
m−2) such that rank ei ◦ . . . ei+k = rank e′i ◦ · · · ◦ e′i+k for all 0 ≤ i < i+ k ≤

m − 2. Denote by nij := rank(ej−1 ◦ · · · ◦ ei) for 0 ≤ i < j ≤ m − 1. Any of those
elements can be constructed by fixing a basis on each Vi and partitioning the resulting
basis of V into Jordan blocks in the way that produces those ranks. From [1, Section
2.3], the number of Jordan blocks that start at Vi and end at Vj is given by

λij := nij − ni−1,j − ni,j+1 + ni−1,j+1,

where nij = 0 if i < 0 or j ≥ m. From the Jordan blocks it is possible to obtain the
associated h as explained at the end of Example 2. This shows that on a Jordan block
starting at Vi and ending at Vj , thus of length j−i+1, we have h(ul) = −(j−i−2l)ul
for l ∈ {0, . . . , j − i}, where ul ∈ Vi+l. This means that

rankT (e) = B(ζ, h) =
∑

0≤i<j≤m−1

λij

j−i∑
l=0

(α− i− l)(j − i− 2l).

This depends on the ranks of the consecutive compositions of the maps from Ej to
Ej+1 given by φ+.

As an example, consider the case where rankEj = k for all j, where mk = n. We
will compute the coarse bound, that is, the value of rankT (G0, g1), which equals the
value of the Toledo character at the element e = (e0, . . . , em−2) ∈ g1 given in some
basis by ej = Idk. The corresponding h = (h0, . . . , hm−1), with each hj ∈ End(Vj)
given in the same basis by −(m − 1 − 2j) Idk, and the Toledo rank turns out to be
rankT (G0, g1) = km(m−1)(m+1)

6 . The rank can also be computed via the previous
general method, noticing that in this case the only nonzero λij is λ0,m−1 = k. The
result is the same. The coarse inequality is then

−(2g − 2)
km(m+ 1)(m− 1)

6
≤ τ(E,φ).
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This inequality can be deduced using the same vector bundle techniques from previous
example. We will assume that each φ+

j : Ej → Ej+1 ⊗KX is nonzero for simplicity,
the zero case being treated using that Ej is invariant as before. We denote Nj :=
ker(φ+

j ) ⊆ Ej , Ij := Im(φ+
j )K

−1
X ⊆ Ej+1. We have rankNj + rank Ij = k, as well as

a nonzero section of det((Ej/Nj)
∗ ⊗ Ij ⊗KX) yielding

degNj + deg Ij + rank Ij(2g − 2) ≥ degEj .

We apply the semistability condition to the invariant subbundles Nj and Ij⊕
⊕

i ̸=j+1Ei,
resulting in the inequalities

degNj ≤ µ(E) rank(Nj) = µ(E)(k − rank Ij),

deg Ij +
∑

i ̸=j+1

degEi ≤ µ(E)(rank Ij + (m− 1)k).

Summing these last two results in

degNj + deg Ij +
∑

i ̸=j+1

degEi ≤ µ(E)mk.

Using the bound on degNj + deg Ij we get

degEj +
∑

i ̸=j+1

degEi ≤ µ(E)mk + rank Ij(2g − 2) ≤ µ(E)mk + k(2g − 2).

Dividing both sides by k and then subtracting µ(E)m we get the following in terms
of slopes:

(µ(Ej)− µ(E)) +
∑

i ̸=j+1

(µ(Ei)− µ(E)) ≤ 2g − 2.

We will rewrite this for convenience as:

2(µ(Ej)− µ(E)) +
∑

i/∈{j,j+1}

(µ(Ei)− µ(E)) ≤ 2g − 2.

Using the identity µ(Ej) − µ(E) =
∑

i ̸=j(µ(E) − µ(Ei)), which is easy to check, we
also obtain

2(µ(E)− µ(Ej+1)) +
∑

i/∈{j,j+1}

(µ(E)− µ(Ei)) ≤ 2g − 2.

Summing the last two inequalities gives

µ(Ej)− µ(Ej+1) ≤ 2g − 2.

Fix l ∈ {1, . . . ,m − 1}. We recall that we are working with subindices mod m.
Chaining the previous inequality several times results in

µ(Ej−l)− µ(Ej) ≤ l(2g − 2).
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Note that the expression of the Toledo invariant from Example 21 can be written
in terms of the slopes (as degEj = kµ(Ej)). It is possible to see by comparing the
coefficients of each slope that the expression can be grouped as

τ(E,φ) = −2k

m

m−1∑
l=1

m−1−l∑
j=0

l(µ(Ej−l)− µ(Ej)).

The previous bound on differences of slopes gives the desired

τ(E,φ) ≥ −2k

m

m−1∑
l=1

m−1−l∑
j=0

l2(2g − 2) = −(2g − 2)
km(m− 1)(m+ 1)

6
.

4.3. Maximal cyclic Higgs bundles

In this section we study the locus Mmax(G0, ḡ1) ⊆ M(G0, ḡ1) of maximal Higgs pairs,
meaning Higgs pairs (E,φ) such that τ(E,φ) = −(2g − 2) rankT (G0, g1), the lowest
possible according to Theorem 8. We do so in the case where (G0, g1) is JM-regular.
This is the generalization of the tube type situation for Hermitian real forms studied
in [6]. We have the following observation:

Proposition 9. Suppose that (G0, g1) is JM-regular. A polystable (G0, ḡ1)-Higgs pair
(E,φ) is maximal if and only if φ+(x) ∈ Ω ⊆ g1 for all x ∈ X, where Ω is the open
orbit.

Proof. First, if (E,φ) is maximal we need that rank(φ+) = rankT (G0, g1) as we have
τ ≥ − rankT (φ

+)(2g−2). This implies that φ+ is in Ω generically. With the notation
from the proof of Theorem 8, by JM-regularity we have s = 0 and the only thing that
we have to inspect is when does degχ̂T

(Eσ) = −χ̂T (
h
2 )(2g − 2) hold. This happens if

and only if the degree of the line bundle Eσ(χ̂T,q)⊗K
qχ̂T (h

2
)

X is zero, which happens
if and only if its nonzero section F (φ+) is nonvanishing, meaning that φ+(x) ∈ Ω for
all x ∈ X.

The space of maximal cyclic bundles is nonempty because already in the case of
fixed points of the C∗-action [5] there are polystable (G0, g1)-Higgs pairs attaining
this bound. We recall the construction.

Let e ∈ Ω ⊆ g1 be an element of the open orbit and complete it to an sl2-triple
(h, e, f) with h ∈ g0, f ∈ g−1 using Proposition 3. Let S ≤ G0 be the connected
subgroup with Lie algebra ⟨e, f, g⟩ ⊆ g, which can be isomorphic to PSL2(C) or
SL2(C) depending on G and the triple. Let C ≤ G be the reductive group centralizing
{h, e, f}, which coincides with Ge

0 ≤ G0: it has to be contained in G0 in order to
stabilize h and it should also stabilize e, and this is sufficient. Let T ≤ S be the
connected subgroup with Lie algebra ⟨h⟩. We have T ≤ G0 as h ∈ g0. There are two
cases:

• If S ≃ SL2(C), it is simply connected and thus the representation ⟨h⟩ → gl(⟨e⟩)
given by λh 7→ ad(λh) lifts to a representation C∗ ≃ T → GL(⟨e⟩), this being
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just the adjoint representation. As [h, e] = 2e, the C∗-action we get on ⟨e⟩ via
this lift is λ · e = λ2e. Choose a square root K

1
2
X (this can be done as degKX =

2g−2 is even) and let ET be the frame bundle for K− 1
2

X , in other words, the C∗-
bundle such that the bundle associated to the standard representation of C∗ in C
is ET (C) ≃ K

− 1
2

X . Using the isomorphism C∗ ≃ T we have a T -bundle, and since
T acts on ⟨e⟩ with weight 2 we have ET (⟨e⟩) ≃ (K

− 1
2

X )2 = K−1
X . This means that

ET (⟨e⟩)⊗KX ≃ O so we can define a constant section e ∈ H0(X,ET (⟨e⟩)⊗KX).
Extending the structure group gives (ET (G0), e) a (G0, ⟨e⟩)-Higgs pair which is
in particular a (G0, ḡ1)-Higgs pair.

• If S ≃ PSL2(C), we can take its universal cover SL2(C) → S which is of degree
two. The torus T ⊆ S lifts to T̂ ⊆ SL2(C). We have that T̂ is a double cover
of T and there are isomorphisms with C∗ such that map T̂ ≃ C∗ → T ≃ C∗ is
given by λ 7→ λ2. By the previous argument the adjoint action of T̂ ≃ C∗ on ⟨e⟩
is given by λ · e = λ2e, so that it descends to T as λ · e = λe. Now we let ET be
the frame bundle of K−1

X . The associated bundle is ET (⟨e⟩) ≃ K−1
X and hence

ET (⟨e⟩) ⊗ KX ≃ O. Thus e defines a holomorphic section of ET (⟨e⟩) ⊗ KX .
Extending the structure group gives (ET (G0), e) a (G0, ⟨e⟩)-Higgs pair and in
particular a (G0, ḡ1)-Higgs pair.

The resulting (ET (G0), e) is called uniformising Higgs bundle and is polystable
(see [34]). By construction φ+ = e is always in the open orbit, hence its Toledo
invariant attains the bound.
Example 24. Consider the case of Higgs pairs associated to the Vinberg θ-pair in
Example 5, whose prehomogeneous vector space (G0, g1) was described in Example
2. We will assume that rankVj = k for all j, which is a situation that we know is
JM-regular. Take e = (e0, . . . , em−2) ∈ g1 to be the one with matrix ej = Idk in some
basis of V . We know that in this case h|Vj = −(m− 1− 2j) Idk, and hence the torus
T is given by the elements tλ ∈ G0 for λ ∈ C∗ defined by tλ|Vj = λ−(m−1−2j) Idk. It
is easy to check that tλetλ−1 = λ2e so we are in the situation of S ≃ SL2(C), and
hence ET is the frame bundle of K− 1

2
X . The extension ET (G0) is obtained by using the

weights −(m− 1− 2j) on each Vj explained before, resulting in the frame bundle for
the vector bundle (which we denote in the same way) ET (G0) =

⊕m−1
j=0 (K

m−1
2

−j

X )⊕k.
The Higgs field is given by e and thus it is the holomorphic map which on the i-th
summand of the form K

m−1
2

−j

X maps to the i-th summand of the form K
m−1

2
−j−1

X as
the identity, using the fact that (K

m−1
2

−j

X )∗ ⊗K
m−1

2
−j−1

X ⊗KX ≃ O so we can take a
well-defined global identity map.

Notice that this is a direct sum of k copies of the uniformising bundle for k = 1,
which is precisely the point above 0 in the Hitchin section that will be described at
the end of Section 5.1.

Our goal for the remainder of the section is to analyse in our context the Cayley
correspondence that takes place in the Hermitian case [6, Section 5], in the preho-
mogeneous vector space case [5, Section 6] and in the case of real forms induced by
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magical sl2-triples, which are a generalization of the real forms of Hermitian type [9].
This is a correspondence between the locus of polystable Higgs pairs with maximal
Toledo invariant, and the moduli space of Km

X -twisted polystable (C, V )-Higgs pairs,
where C = Ge

0 is the same as above and V ⊆ g0 is certain vector subspace, the action
of C in V being the adjoint. First we will identify this subspace in our situation.

Consider the sl2C-representation on g given by the triple (h, e, f). By [36, Theo-
rem 1.67] we have that g decomposes as a direct sum of irreducible sl2C-representations,
each of them uniquely determined by its dimension [36, Theorem 1.66]. Let W ⊆ g
be the direct sum of all the subspaces corresponding to irreducible representations of
dimension 2m − 1. Notice that this is the maximum possible such dimension, since
e ∈ g1 implies ad(e)2m ≡ 0. The desired subspace is V := g0 ∩W ⊆ g0.

Proposition 10. Suppose that the prehomogeneous vector space (G0, g1) is JM-
regular. The map ad(e)m−1 : g1−m → V is an isomorphism.

Proof. By the structure of irreducible representations of sl2C ([36, Theorem 1.66])
and the fact that the maximum possible dimension of an irreducible representation is
2m−1, the eigenvalue 2(1−m) for ad(h) can only appear on elements of W and hence
we have that ker (ad(h)− 2(1−m) Id) ⊆ W . By JM-regularity, h = 2ζ and thus this
space is precisely g1−m, i.e. g1−m ⊆ W . As W is a subrepresentation, we have for all
j that ad(e)j(W ) ⊆ W . Moreover, since e ∈ g1, we have ad(e)m−1(g1−m) ⊆ g0. We
conclude that ad(e)m−1(g1−m) ⊆ V so the map is well defined.

It is an isomorphism: suppose that in W there are n summands of the irreducible
sl2C-representation of dimension 2m − 1. Let B := {v1, . . . , vn} be n linearly inde-
pendent eigenvectors for the eigenvalue 2(1 − m) of ad(h), one in each irreducible
representation. We know from the previous argument that g1−m = ⟨B⟩. Now,
B′ := {ad(e)m−1(v1), . . . , ad(e)

m−1(vn)} are linearly independent (because each of
them is in a different irreducible representation) and by the structure of irreducible
representations we have ⟨B′⟩ = V .

Moreover, it makes sense to consider the pair (C, V ) as the action of C leaves
V invariant. This is because of the fact that if c ⊆ g0 is the Lie algebra of C, and
we take c ∈ c, adm−1(e)(x) ∈ V (where x ∈ g1−m), we have that [c, adm−1(e)(x)] =
adm−1(e)([c, x]) ∈ V , where we used that [c, e] = 0 (recall that C centralizes e) and
that [c, x] ∈ g1−m.

Finally, suppose that EC is a principal C-bundle and recall the T -bundle ET from
before. Since m : T × C → G0 is a group homomorphism (because T commutes
with C, this follows from the fact that if x ∈ g0 centralizes e, then [e, [h, x]] =
[[e, h], x] + [h, [e, x]] = [−2e, x] + 0 = 0), it is possible to define the G0-bundle

(ET ⊗ EC)(G0) := (ET × EC)×m G0.

This is a notion of tensor product for principal bundles, and it works similarly for any
two commuting subgroups of G0 (for example, we can tensor any G0-bundle by any
bundle for a central subgroup such as T ). As with vector bundles, given metrics hT
and hC on each bundle respectively, there is a well defined product metric hT ⊗hC on
ET⊗EC(G0) and the curvatures of the Chern connections verify FhT⊗hC

= FhT
+FhC

.
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We can now state the Cayley correspondence in this case. We need an extra
assumption on (C, V ) in order to prove the full correspondence, which is that it be a
Vinberg θ-pair. This condition is not automatic.

Theorem 9 (Cayley correspondence). Suppose that the prehomogeneous vector space
(G0, g1) is JM-regular. There is an injective map

Mmax(G0, ḡ1) → MKm
X
(C, V ).

Moreover, if the pair (C, V ) is a Vinberg θ-pair, the map is surjective.

Proof. First we will define the map, which is a version of the global Slodowy slice map
from [12] which, in turn, generalises the map behind the Cayley correspondence for
hermitian forms [6] and magical sl2-triples [9]. The definition uses the notation and
elements introduced throughout the section, and is an extension of the construction
given in [5] for the case φ− = 0. Take (E,φ) ∈ Mmax(G0, ḡ1). We will use the
fact that E(g1) ⊗KX ≃ (E−1

T ⊗ E)(g1), which is true in both cases S ≃ SL2(C) or
S ≃ PSL2(C) as can be seen, for example, checking that the transition functions for
both agree.

Since the Toledo invariant is maximal, by Proposition 9 we have φ+(x) ∈ Ω for
all x ∈ X. Thus, φ+ ∈ H0(X,E(Ω) ⊗ KX) = H0(X, (E−1

T ⊗ E)(Ω)). As C is
the stabilizer of the element e ∈ Ω in G0, we have Ω = G0/C. In other words,
φ+ ∈ H0((E−1

T ⊗ E)(G0/C)) is a reduction of the structure group of E−1
T ⊗ E from

G0 to C. Let EC be the reduced C-bundle. This is the first part of the desired
(C, V )-Higgs pair. Notice that we have EC(G0) ≃ E−1

T ⊗ E which in turn gives the
relation

E ≃ ET ⊗ EC(G0) = (ET ⊗ EC)(G0).

For the second part, we have as before that (ET ⊗ EC)(⟨e⟩) ⊗ KX = EC(⟨e⟩) ⊗
K−1

X ⊗KX = EC(⟨e⟩). Since C centralises e, there is a well-defined constant section
e ∈ H0(X,EC(⟨e⟩)) = H0(X, (ET ⊗EC)(⟨e⟩)⊗KX) ⊆ H0(X, (ET ⊗EC)(g1)⊗KX).
Using this section together with Proposition 10 gives a vector bundle isomorphism:

ad(e)m−1 : (ET ⊗ EC)(g1−m)⊗KX → (ET ⊗ EC)(V )⊗Km
X .

Since T acts trivially on g0 (because [h, g0] = 0 by JM-regularity) we get that (ET ⊗
EC)(V ) ≃ EC(V ). We can now take φ− ∈ H0(X,E(g1−m) ⊗ KX) = H0(X, (ET ⊗
EC)(G0)(g1−m)⊗KX) = H0(X, (ET ⊗EC)(g1−m)⊗KX) and apply the previous to
get

φ′ := ad(e)m−1(φ−) ∈ H0(X,EC(V )⊗Km
X ).

The Cayley correspondence map is then

(E,φ) 7→ (EC , φ
′).

The inverse has already been hinted at throughout the proof, but we collect it now.
Given (EC , φ

′) a (C, V )-Higgs pair, we set

E := (ET ⊗ EC)(G0),
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φ+ := e ∈ H0(X,E(g1)⊗KX),

φ− := (ad(e)m−1)−1(φ′) ∈ H0(X,E(g1−m)⊗KX).

Its Toledo invariant is the desired one (we know this if we start with (EC , φ
′) which

is the image of some (E,φ) with maximal invariant, but we shall see that it holds no
matter the starting (C, V )-pair (EC , φ

′)). We cannot simply argue that φ+ ∈ Ω and
use Proposition 9 because we do not yet know whether (E,φ+ + φ−) is polystable.
However, we can compute the invariant. First notice that if c ⊆ g0 is the Lie algebra
for C, the Toledo character vanishes: χT (c) ≡ 0. This is because if c ∈ c, we have
2B(ζ, c) = B(h, c) = B([e, f ], c) = −B(f, [e, c]) = −B(f, 0) = 0. Thus, any lift
χ̃T : G0 → C∗ of some qχT satisfies χ̃T |C ≡ 1, meaning that the bundles (ET ⊗
EC)(G0) ×χ̃T C∗ and ET (G0) ×χ̃T C∗ are the same (the transition functions agree).
Thus

τ(E,φ) = τ(ET (G0), e),

and (ET (G0), e) is a uniformising Higgs bundle, which is maximal.
So far we have established a correspondence between (G0, ḡ1)-Higgs pairs with

maximal Toledo invariant (equal to −(2g−2) rankT (G0, g1)) and Km
X -twisted (C, V )-

Higgs pairs. Now we see that it restricts to the moduli space, in other words, that if
we start with a polystable (E,φ) ∈ Mmax(G0, ḡ1) the resulting (EC , φ

′) is polystable.
For this, pick a maximal compact CR ⊆ C with Lie algebra cR ⊆ c. Let s ∈ icR,Γ,
P ′
s ⊆ C the associated subgroup and σ′ ∈ H0(X,EC(C/P ′

s)) a reduction of structure
group such that φ′ ∈ H0(X,EC,σ′(Vs) ⊗ Km

X ). This element s regarded in ikΓ for k
the Lie algebra of a maximal compact K in G0 containing CR also defines a subgroup
Ps ⊆ G0, which by definition verifies P ′

s ⊆ Ps. Thus we have a map C/P ′
s → G0/Ps

which, from σ′, gives a reduction σ ∈ H0(X,E(G0/Ps)). Now we need to verify
that φ ∈ H0(X,Eσ(ḡ1,s)⊗KX), in other words, that e ∈ H0(X,Eσ(g1,s)⊗KX) and
(ad(e)m−1)−1(φ′) ∈ H0(X,Eσ(g1−m,s) ⊗ KX). The former is due to the fact that
s ∈ icR ⊆ c, so that [s, e] = 0. The latter follows because (pointwise) ad(e)m−1

restricts to an isomorphism between g1−m,s and Vs, since for x ∈ g1−m we have
ad(e)m−1([s, x]) = [s, ad(e)m−1(x)] as [s, e] = 0. Thus, since φ′ takes values in Vs, we
have that φ− takes values in g1−m,s as desired. Polystability of (E,φ) then gives

degE(σ, s) ≥ 0.

Now, recall from before that c and ⟨h⟩ are orthogonal via B. In particular, B(s, h) = 0.
This means that the bundles Eσ ×χ̃s C∗ = ((ET ⊗ EC)(G0))σ ×χ̃s C∗ and EC,σ′ ×χ̃s

C∗ are the same (or, using the differential geometric definition of the degree, that
χs(FhT

+ FhC
) = χs(FhC

)). Thus

degEC(σ
′, s) = degE(σ, s) ≥ 0.

This shows semistability, and polystability follows after checking that if degEC(σ
′, s) =

0, by the equality of the degrees above and polystability of (E,φ) we get a reduction
σ′′ of E to the subgroup Ls ⊆ Ps. But then E′

C := (Eσ′′ ⊗ E−1
T ) ∩ EC is a reduction

of EC to L′
s ⊆ P ′

s.
Thus the map restricts from Mmax(G0, ḡ1) to MKm

X
(C, V ) and it is injective due

to the inverse shown above. Now we will show that if (C, V ) is a Vinberg θ-pair,
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the map is surjective. The only thing that remains to be shown for this is that
the inverse sends polystable bundles to polystable bundles. This uses the Hitchin–
Kobayashi correspondence from Theorem 7. Let τ : g → g be an involution defining
a compact real form K ⊆ G with τ(ḡi) = ḡ−i and chosen so that τ(e) = −f .

First, by polystability of the uniformising Higgs bundle (ET , e) and the Hitchin–
Kobayashi correspondence, there exists a metric hT on ET such that its curvature
FhT

satisfies
FhT

+ [e,−τhT
(e)]ω = 0

which means that FhT
= −[e,−f ]ω = hω, that is, the curvature is constant.

On the other hand, since (EC , φ
′) is polystable, there is a metric hC on EC such

that, after fixing a metric on KX and using it to define a metric on the power L = Km
X

which defines an involution τhC
, we have

FhC
+ [φ′,−τhC

(φ′)]ω = 0,

for ω a Kähler form on X.
Using these we can take on E = (ET ⊗EC)(G0) the product metric hT ⊗hC , and

its curvature is FhT
+ FhC

which satisfies:

FhT
+ FhC

= hω − [φ′,−τhC
(φ′)]ω,

which can be rewritten, using the fact that φ′ = adm−1(e)(φ−) and that τhC
=

τhT⊗hC
, as

FhT
+ FhC

+ [adm−1(e)(φ−),−τhT⊗hC
(adm−1(e)(φ−))] = hω = −i(ih)ω.

Notice that ih is central in g0 (by JM-regularity) and it belongs in k0 because τ(ih) =
−iτ([e, f ]) = −i[−f,−e] = i[e, f ] = ih. Thus we can claim by the Hitchin–Kobayashi
correspondence that the G0-Higgs bundle (E, adm−1(e)(φ−)) is α-polystable for α :=
ih ∈ z0.

Having established this we can finally show the polystability of (E,φ+ + φ−).
Let s ∈ ik0 and consider a reduction σ ∈ H0(X,E(G0/Ps)) with φ = φ+ + φ− ∈
H0(X,Eσ(g1,s ⊕ g1−m,s) ⊗ KX). This means that φ+ = e ∈ H0(X,Eσ(g1,s) ⊗ KX)
and φ− ∈ H0(X,Eσ(g1−m,s) ⊗KX), so that adm−1(e)(φ−) ∈ H0(X,Eσ(Vs) ⊗Km

X ).
The ih-polystability of (E, adm−1(e)(φ−)) then implies

degE(σ, s) ≥ B(ih, s).

We show in Lemma 3 below that B(ih, s) ≥ 0, so (E,φ) is semistable. For polystabil-
ity, if degE(σ, s) = 0 then B(ih, s) = 0 and thus ih-polystability of (E, adm−1(e)(φ−))
gives a reduction σ′ to a Levi Ls ⊆ Ps such that adm−1(e)(φ−) ∈ H0(X,Eσ′(V 0

s ) ⊗
Km

X ). Using the second part of Lemma 3 we have that e ∈ g01,s, so that adm−1(e) is an
isomorphism between g01−m,s and V 0

s and thus we get that φ− ∈ H0(X,Eσ′(g01−m,s)⊗
KX) and hence φ ∈ H0(X,Eσ′(ḡ01,s)⊗KX), yielding polystability of (E,φ) and com-
pleting the proof.

It remains to establish a technical lemma used during the last part of the proof.
For the case m = 2 this is [6, Lemma 5.6] proven using finite-dimensional affine
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Geometric Invariant Theory. We provide a proof below for the general case, relying
on the Hitchin–Kobayashi correspondence (at heart, it is no different from the GIT
proof, but using the Hitchin–Kobayashi correspondence from Chapter 3 we avoid
having to introduce new concepts).

Lemma 3. Let s ∈ ik0 and suppose that e ∈ g1,s. Then, B(ih, s) ≥ 0 with equality if
and only if e ∈ g01,s.

Proof. Consider the O-twisted (G0, g1)-Higgs pair given by the trivial principal bundle
X × G0 and the constant section e ∈ H0(X, (X × G0)(g1)) = H0(X,X × g1). As
the principal bundle is trivial we can choose a metric h with Fh = 0, as well as the
constant metric on L = O so that

Fh + [e, τh(e)]ω = 0 + [e,−f ]ω = −hω = −i(−ih)ω,

which by the Hitchin–Kobayashi correspondence of Theorem 7 means that this bundle
is α-polystable for α = −ih. Because the bundle is trivial we can take a constant
reduction σ to Ps and the fact that e ∈ g1,s yields by polystability that deg(X ×
G0)(σ, s) ≥ B(−ih, s). Since (X × G0) is trivial, deg(X × G0)(σ, s) = 0 (this is
immediately seen from either of the definitions of degree) so that 0 ≥ B(−ih, s)
as desired. Equality implies by polystability that e ∈ g01,s, and if e ∈ g01,s then
B(ih, s) = B(i[e, f ], s) = −B(if, [e, s]) = −B(if, 0) = 0.

Remark 14. We will shortly see that indeed the assumption that (C, V ) be a Vinberg
θ-pair is not automatic, but in the case m = 2 it always holds because (C, V ) is in fact
a symmetric pair, as explained in [6] or, in a more general setting, in [9, Proposition
2.6]. Similarly, for (G0, g1)-Higgs pairs (the case corresponding to φ− = 0), we have
that V = 0 so that (C, V ) is another symmetric pair. Thus, Theorem 9 includes these
already existing cases.

Example 25. We now give an example of the Cayley correspondence for m = 3.
We will work with the Vinberg θ-pair of Example 5 corresponding to cyclic quiver
representations, with ranks (1, 1, 1). It is JM-regular as all the ranks are equal. In

this case the isomorphism g−2 = C → V is given by sending λ to

λ 0 0
0 −2λ 0
0 0 λ

. The

centralizer of e =

0 0 0
1 0 0
0 1 0

 is C = µ3 =
{
λ · Id3 : λ3 = 1

}
with Lie algebra c = 0.

Because V is abelian we have that c ⊕ V is a Cartan decomposition and (C, V ) a
symmetric pair. Thus the Cayley correspondence applies. Given a maximal (G0, ḡ1)-
Higgs pair (E = L0 ⊕ L1 ⊕ L2, φ), where rankLj = 1 and

∑2
j=0 degLj = 0, the fact

that φ+ = e means that Lj ≃ L0K
−j
X , so that we must have E = KX ⊕ O ⊕ K−1

X .
The Higgs field has to be

φ =

0 0 ω
1 0 0
0 1 0

 ,
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where ω ∈ H0(X,Hom(K−1
X ,KX) ⊗ KX) = H0(X,K3

X). Thus, the maximal Higgs
pairs in this case are parameterized by sections of K3

X , and the Cayley correspondence
bijects each bundle into (O, ω), a K3

X -twisted (C, V )-Higgs pair.

Example 26. The previous example for ranks (2, 2, 2) does not verify that (C, V ) is
a Vinberg θ-pair. In this case,

C =


X 0 0

0 X 0
0 0 X

 : X ∈ SL2(C)

 ,

and

V =


X 0 0

0 −2X 0
0 0 X

 : X ∈ gl2C

 .

If we select the elements v, v′ ∈ V corresponding to X =

(
0 −1
1 0

)
and X ′ =(

0 1
1 0

)
respectively, we get, if B :=

(
1 0
0 −1

)
, that

[v, v′] =

2B 0 0
0 8B 0
0 0 2B

 =

4B 0 0
0 4B 0
0 0 4B

+

−2B 0 0
0 4B 0
0 0 −2B

 ,

where the first summand is in c and the second in V . The fact that [V, V ] has nonzero
projection to both V and c means that (C, V ) is never a Vinberg θ-pair. Thus, the
Cayley correspondence injects the space of maximal (G0, ḡ1)-Higgs pairs into the
space of (C, V )-bundles, but we do not yet know whether this map is surjective.



CHAPTER 5

The Hitchin map for cyclic
Higgs bundles

5.1. The Hitchin map

An important element of the theory of Higgs pairs for Vinberg θ-pairs (G0, g1) is the
existence of a fibration of the moduli space M(G0, g1). This was intially studied by
Hitchin [32] for G-Higgs bundles (which correspond to θ = IdG) when G is a classical
group, that is, a semisimple complex Lie subgroup of GLn(C) or GLn(C) itself. The
resulting map in that case is a fibration onto a vector space of half the dimension of
the moduli space, and the generic fibre is isomorphic to an abelian variety of the same
dimension as the base. For G-Higgs bundles, in terms of the symplectic structure in
M(G) mentioned in Example 13, the fibration is a completely integrable hamiltonian
system on M(G).

We start by giving the definition of this map, known as the Hitchin system
(for G-Higgs bundles), Hitchin fibration or Hitchin map. By Theorem 3, the
invariant ring C[g1]G0 is a polynomial algebra generated freely by a finite number of
elements, that is, C[g1]

G0 = C[f1, . . . , fr]. Then, because of the G0-invariance, it is
possible, given a (G0, g1)-Higgs pair (E,φ), to evaluate the Higgs field in each of the
fi, resulting in an element fi(φ) ∈ H0(X,Kdeg fi

X ). The Hitchin map is defined as

h : M(G0, g1) → A :=

r⊕
i=1

H0(X,Kdeg fi
X )

(E,φ) 7→ (f1(φ), . . . , fr(φ))

Example 27 (The Hitchin system). In the case of Example 13, where G is a complex
reductive Lie group acting on its Lie algebra g by the adjoint action, already a result
of Chevalley [35, Section 23.1] shows that the restriction map C[g]G → C[t]W , where
t ⊆ g is a Cartan subalgebra and W is the Weyl group, is an isomorphism, allowing
that the Hitchin map be defined as explained above. The easiest case to understand
is G = GLn(C). The Lie algebra g = glnC is given by endomorphisms of an n-
dimensional complex vector space. Thus, given A ∈ glnC, we can compute the

53
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characteristic polynomial:

pA(x) = det(xIn −A) = xn + p1(A)xn−1 + · · ·+ pn−1(A)x+ pn(A),

where each pi ∈ C[g] is a homogeneous polynomial on g and, from elementary linear
algebra, the value pi(A) is invariant under the action of G. In fact, we have that
C[g]G = C[p1, . . . , pn]. This means that if we view a GLn(C)-Higgs bundle as a
rank n holomorphic vector bundle E with a section φ ∈ H0(X,End(E)⊗KX) as in
Example 14, the Hitchin map is given by the characteristic polynomial of φ and takes
values in

⊕n
i=1H

0(X,Ki
X).

For the semisimple classical groups G, the situation is very similar and it is studied
in depth in [32]. If G = SLn(C), elements of the Lie algebra are traceless and thus
p1(A) = 0, but we still have C[g]G = C[p2, . . . , pn]. For G = Sp2n(C) and G =
SO2n+1(C), examining the eigenvalues of endomorphisms in the Lie algebra allows
to conclude that pi(A) = 0 for odd values of i, so that C[g]G = C[p2, p4, . . . , p2n].
Finally, for G = SO2n(C), the same analysis applies, however the determinant also
verifies p2n(A) = f2(A), where f is a degree n homogeneous polynomial called the
pfaffian. As a result, C[g]G = C[p2, p4, . . . , p2n−2, f ]. In short, for classical groups
the Hitchin map is given by the characteristic polynomial of the Higgs field, with the
exception of SO2n(C) in which a square root of the determinant has to be taken.

An interesting feature of the Hitchin system in this latter case of semisimple
groups is the existence of a distinguished section, the Hitchin section, studied
in [33]. It can easily be described in the classical case using companion matrices,
which provide a section of the characteristic polynomial. For simplicity suppose that
G = SLn(C) and a = (a2, . . . , an) ∈ A is a point on the base of the Hitchin map, so
that ai ∈ H0(X,Ki

X). Take the vector bundle

E = K
n−1
2

X ⊗ (O ⊕K−1
X ⊕ · · · ⊕K−n+1

X ),

where the first factor depends on the choice of a square root K
1
2
X of KX and ensures

that detE = O. Let the Higgs field be defined by the companion matrix

φa =


0 0 . . . 0 −an
1 0 . . . 0 −an−1

0 1 . . . 0 −an−2
...

... . . . ...
...

0 0 . . . 1 0

 .

This is well defined: for example, we can identify Hom(Ki
X ,Ki−1

X ) with K−i
X ⊗Ki−1

X =
K−1

X , so that Hom(Ki
X ,Ki−1

X ⊗KX) = O and as a consequence it makes sense to write
in the above matrix 1 ∈ H0(X,O). The SLn(C)-Higgs bundles (E,φa) are stable and
h((E,φa)) = a.

Interestingly, this section consists entirely of PSLn(R)-Higgs bundles (cf. Exam-
ples 15, 16) and, via the non-abelian Hodge correspondence of Example 17, it defines
a component of representations of the fundamental group π1(X) in PSLn(R). For
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n = 2 this is the Teichmüller space parameterizing complex structures on X. Con-
sequently, the resulting component (called Hitchin component) for any semisimple
complex G is an instance of what is known as higher Teichmüller component.

Remark 15. If we look at arbitrary representations ρ : G → GL(V ) and their cor-
responding pairs (G,V ), the property that C[V ]G be a finitely generated polynomial
ring (thus permitting the existence of a Hitchin map) is very rare, highlighting the
importance of Vinberg θ-pairs in the theory of Higgs pairs. For a more general frame-
work in which the invariant ring still has the desired structure, see the notion of polar
representations studied in [16].

5.2. Spectral description for classical Higgs bundles

In the previous section we have explained how the Hitchin map, in the case of semisim-
ple classical groups or G = GLn(C), takes a simple form in terms of coefficients of
the characteristic polynomial of the Higgs field. In this context, Hitchin [32] showed
case-by-case that the generic fibre of the map is an abelian variety, by establishing a
correspondence between points in the fibre and some line bundles on a finite cover of
the Riemann surface X, called spectral curve, obtained by looking at the eigenvalues
of the Higgs field in the fibre. This correspondence was also studied via algebraic
geometry methods in the L-twisted case by Beauville, Narasimhan and Ramanan [4].
In this section we explain how this correspondence works.

We start by looking at GLn(C)-Higgs bundles. Recall from Example 14 that
these are pairs (E,φ) where E is a rank n holomorphic vector bundle over X, and
φ ∈ H0(X,End(E)⊗KX). We know from Example 27 that the invariant polynomials
are generated by the coefficients of the characteristic polynomial {pi : 1 ≤ i ≤ n},
each being homogeneous of degree i, and so the Hitchin map is

h : M(GLn(C)) → A =

r⊕
i=1

H0(X,Ki
X)

(E,φ) 7→ (p1(φ), . . . , pn(φ)).

We want to study the fibre at a := (a1, . . . , an) ∈ A, where each ai ∈ H0(X,Ki
X) is a

fixed section. This can be done using a curve S ⊆ KX which covers X via restriction
of the projection π : KX → X and is defined as follows. Consider the pullback

π∗KX KX

KX X

π

π

where π∗KX is the vector bundle on KX that can be seen as the subset of KX ×KX

consisting of points (ω1, ω2) such that π(ω1) = π(ω2). This has a section λ : KX →
π∗KX given by ω 7→ (ω, ω) called tautological section. By pulling back the sections
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ai, one also gets π∗ai ∈ H0(KX , π∗Ki
X). We can then define the spectral curve as

Sa := {λn + π∗a1λ
n−1 + · · ·+ π∗an−1λ+ π∗an = 0}.

Notice that it is defined as the vanishing locus of a section sa of π∗Kn
X . Locally, above

each point x ∈ X the curve consists of the eigenvalues of φ|x for any Higgs bundle
(E,φ) that projects to a via h, as Sa is defined essentially as the zero locus of the
characteristic polynomial given by a.

The curve Sa is a ramified covering π : Sa → X of degree n which for generic a
is irreducible. Moreover, by changing the values of a we get different spectral curves
Sa corresponding to different divisors in KX . Since the spectral curve is defined by
zeroes of a section sa ∈ H0(KX , π∗K) which is a polynomial whose coefficients are
given by a, the elements a and λa give the same curve. Thus we get a space of
divisors parametrized by a subspace of P(H0(KX , π∗K)), and it is in fact a linear
subspace because we have that sa+a′ = sa + sa′ . Such a set of curves is known
as linear system of divisors (see e.g. [28, Chapter 1]). It is a theorem of Bertini
[28, Chapter 1] that the generic curve in such a system is smooth except possibly
at base points, which are by definition the points that belong to every curve in the
system. Suppose that p ∈ KX is such a point. Then p ∈ {s0 = 0} = {λn = 0}, so
λ(p) = 0. But also, for all an ∈ H0(X,Kn

X) we have p ∈ {λn + π∗an = 0}. Thus
0 = λn(p)+π∗an(p) = 0+π∗an(p) = π∗an(p) = an(π(p)). This means that there is a
point π(p) ∈ X where every section of Kn

X vanishes, which is known to be false. We
have then shown:

Remark 16. For generic values of a, the corresponding spectral curve Sa is irre-
ducible and smooth.

It is precisely for these values that we will describe the fibre and see that it is
abelian. The covering π : Sa → X ramifies at the points where sa has multiple roots,
so the ramification divisor Ra on Sa can be defined as the zero locus of the resultant
of sa and the section corresponding to the formal derivative ∂sa

∂λ , which is a section
of H0(X,π∗K

n(n−1)
X ). We can then use Riemann–Hurwitz to compute the genus:

2gSa = n(2g − 2) + degRa + 2 = n(2g − 2) + n(n− 1)(2g − 2) + 2,

so that gSa = 1 + n2(g − 1).
Now fix a ∈ A such that S := Sa is irreducible and smooth and take a line bundle

L → S. This gives a one dimensional vector space at each point in S which represents
an eigenvalue, so it defines E and φ such that L models the eigenspaces of φ at each
point. This is rigorously carried out as follows: define E := π∗L to be the direct
image bundle (that is, the bundle corresponding to the direct image sheaf of L via
π). Take an open subset U ⊆ X and a section s ∈ H0(π−1(U), L). We then have a
section s⊗ λ ∈ H0(π−1(U), L⊗ π∗KX). That is, multiplication by λ gives a map

H0(π−1(U), L) → H0(π−1(U), L⊗ π∗KX),

which, by definition of direct image, becomes a map

H0(U,E) → H0(U,E ⊗KX).
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This is valid for each open set U and thus defines a vector bundle map φ : E →
E ⊗ KX , that is, a section φ ∈ H0(X,End(E) ⊗ KX). By definition, φ has eigen-
values given by λ (we defined it as multiplication by λ on each fiber of L) and thus
det(λ|S Id−π∗φ) = 0. Since this is irreducible by the choice of a, Cayley–Hamilton
shows that it is the characteristic polynomial of φ and thus h(E,φ) = a, so that we
constructed a point in the fiber.

Conversely, if (E,φ) ∈ h−1(a), we have that det(λ − π∗φ) = sa = 0 on S, so
that outside of Ra, where we have n distinct eigenvalues, we have a well defined
decomposition into eigenspaces and these define the line bundle L. We can accomplish
this rigorously via sheaf theory: the vector bundle map λ−π∗φ can be seen as a map
of locally free sheaves, and its kernel ker(λ− π∗φ) ⊆ π∗E is locally free of rank 1 by
the previous observation. This defines a line bundle L → S which corresponds by the
previous construction to (E,φ).

If the degree of L is d′, since π∗L = E we get that

deg(E) = deg π∗L = degL+ (g − 1) deg π − (gS − 1) = d′ − n(n− 1)(g − 1).

We have shown:

Theorem 10 (Spectral correspondence for GLn(C) [4, 32]). For a ∈ A such that
the spectral curve Sa is irreducible and smooth, there is a bijective correspondence
between holomorphic line bundles over S of degree d′ and points in h−1(a) of degree
d′ + n(n− 1)(g − 1).

Thus, the generic fiber of h is the abelian variety Pic(Sa) (the variety of line
bundles on Sa, which is an abelian group with the tensor product), whose dimension
is gSa = n2(g − 1) + 1, half of the dimension of the moduli space of GL(n,C)-Higgs
bundles (cf. Example 18).

For each of the semisimple classical Lie groups, extra care needs to be taken in
order to obtain Higgs bundles with the structural constraints corresponding to each
group, as explained in Example 14. This translates in having to restrict to some
subset of the line bundles on the spectral curve. We will showcase this by explaining
the case of G = SLn(C). As stated in the previous section, the lie algebra sln(C)
corresponds to traceless linear endomorphisms of an n-dimensional complex vector
space. As such, the functions giving the Hitchin map, which still are the coefficients
of the characteristic polynomial, become {p2, . . . , pn}. Given a := (a2, . . . , an) ∈ A a
point of the Hitchin base of SLn(C), we define the spectral curve Sa as before, via the
vanishing of the section sa defined as a polynomial whose coefficients are given by a.

If (E,φ) is a SLn(C)-Higgs bundle, that is, E is a holomorphic vector bundle of
rank n and detE = O, and φ ∈ H0(X,End0(E) ⊗KX) is traceless, we can still use
the spectral correspondence detailed above and get a line bundle L → Sa. However,
not every L → Sa gives a SLn(C)-Higgs bundle. Indeed, the obtained (E,φ) will
verify that φ is traceless, because it has characteristic polynomial given by a which
does not have a term in λn−1, but it could be the case that detE ̸= O. Thus, we
need to restrict to the line bundles L such that det(π∗L) = O.
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This subset can be explicitly described. First, recall that for a morphism of
algebraic curves f : C → C ′, we have a homomorphism on divisors (line bundles),
known as the norm map:

Nm : Pic(C) → Pic(C ′),

given by Nm(
∑

i nipi) :=
∑

i nif(pi). Its kernel defines a subset of Pic(C) known
as the Prym variety, Prym(C,C ′) := kerNm ⊆ Pic(C), which is a subvariety of
dimension gC − gC′ the difference of genera.

Returning to the spectral correspondence, in [4] it is shown that for a line bundle
L → Sa we have

det(π∗L) ≃ Nm(L)⊗K
−n(n−1)/2
X .

This means that the L → Sa that we seek (those with det(π∗L) = O) are those
with Nm(L) ≃ K

n(n−1)/2
X = Nm(π∗K

(n−1)/2
X ) (for the last equality we use that

Nm(
∑

niπ
−1(pi)) = n

∑
nipi as π has degree n). Thus we want the line bundles

L → Sa with
L⊗ π∗K

−(n−1)/2
X ∈ Prym(Sa, X).

In short, the generic fibre in this case is given (up to shift by π∗K
−(n−1)/2
X ) by the

Prym variety Prym(Sa, X), of dimension gSa − g = (n2 − 1)(g − 1), again half the
one of the moduli space. For the remaining classical semisimple Lie groups, similar
arguments can be made [32] to see the generic fibres as Prym varieties for suitable
curve morphisms, and it is always the case that the resulting dimension is half of
the moduli space (necessary to show that h is a completely integrable system in this
context).

5.3. Quasi-split cyclic Higgs bundles

Interested in the study of the Hitchin map for cyclic Higgs bundles, it is reasonable
to ask whether the previous analysis can be made to describe the generic fibre and
whether we can expect it to be abelian. Already in the involutive (m = 2) case, which
was studied by Schaposnik [44, 45] using spectral curves and by García-Prada and
Peón-Nieto [23, 42] using a different approach involving cameral curves, it can be seen
that the generic fibre is no longer abelian, except for the case when the associated
real form GR is quasi-split.

This notion of quasi-split real form has different characterizations. Let θ ∈
Aut2(G) be the corresponding holomorphic involution inducing the Z/2Z-grading
g = g0 ⊕ g1. Let c ⊆ g1 be a Cartan subspace as in Definition 8. We define the
regular elements of g1 for the adjoint action of G0 as

greg
1 = {x ∈ g1 : dimCG0(x) = dim c},

as well as those of g for the adjoint action of G as

greg = {x ∈ g : dimCG(x) = dim t},
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where t ⊆ g is the corresponding Cartan subspace (in this case, subalgebra). We have
the following definition for quasi-split [36, Section VI.12].

Definition 22. The real form GR (or the involution θ) is quasi-split if any of the
following equivalent conditions is met:

1. The centraliser Cg0(c) is abelian.

2. There is a Borel (i.e. maximal solvable and connected) subgroup B ⊆ G with
a θ-invariant maximal torus T ⊆ B such that θ(B) ∩B = T .

3. greg
1 = g1 ∩ greg.

If Cg0(c) = 0, the real form (or involution) is called split.

Example 28. Consider the real form SU(p, q) of SLp+q(C), corresponding to the
involution of Example 5 where the vector spaces V0 and V1 have dimension p, q
respectively. Without loss of generality assume that p ≤ q. We can then split V1 :=
U1 ⊕ W1 where dimU1 = p, dimW1 = q − p. In Example 5 we gave a description
of c in terms of this splitting. Using matrices (after fixing basis which respects the
splitting of V1), as elements of slp+q(C), we had:

c =





0 . . . 0 λ1 . . . 0 . . . 0
... . . . ...

... . . . ... . . . ...
0 . . . 0 0 . . . λp . . . 0

λ1 . . . 0 0 . . . 0 . . . 0
... . . . ...

... . . . ... . . . ...
0 . . . λp 0 . . . 0 . . . 0
...

...
...

... . . . ... . . . ...
0 . . . 0 0 . . . 0 . . . 0


: λ1, . . . , λp ∈ C


.

Its centraliser in g0 is readily computed in terms of the basis used to construct c.
With respect to the basis elements of V0 and U1, we need diagonal endomorphisms
so that they centralize c. However, there are no restrictions with respect to W1, as
the elements of c vanish there. Thus,

Cg0(c) =





λ1 . . . 0 0 . . . 0 0 . . . 0
... . . . ...

... . . . ...
... . . . ...

0 . . . λp 0 . . . 0 0 . . . 0

0 . . . 0 λ1 . . . 0 0 . . . 0
... . . . ...

... . . . ...
... . . . ...

0 . . . 0 0 . . . λp 0 . . . 0

0 . . . 0 0 . . . 0 a11 . . . a1(q−p)
...

...
...

... . . . ...
... . . . ...

0 . . . 0 0 . . . 0 a(q−p)1 . . . a(q−p)(q−p)


: λ1, . . . , λp, aij ∈ C


0

.

The subscript 0 at the very end means considering only traceless elements. This
centralizer is abelian if and only if each element belonging to it is diagonal, hence
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if and only if q − p ∈ {0, 1}. Thus, the only quasi-split cases of this example are
SU(p, p) and SU(p, p + 1). Notice that there is always one of these occuring in each
SLn(C) (this is a general fact: quasi-split forms always exist). The only split case
corresponds to p = q = 1, giving SU(1, 1) ≃ SL2(R). (In general, SLn(R) ⊆ SLn(C)
is always split).

In general, for G semisimple, the quasi-split forms are classified: they are the split
ones, as well as those with Lie algebra isomorphic to su(p, p), su(p, p+1), so(p, p+2)
and e6(2).

In general, for cyclic Higgs bundles, we want to give a general definition of a
quasi-split Vinberg θ-pair (or quasi-split order m automorphism θ). A reasonable
definition, given the fact that we already have all the necessary elements and they
are related to the definition of the Hitchin map, is

Definition 23. Let (G0, g1) be a Vinberg θ-pair, for θ ∈ Autm(G). Let c ⊆ g1 be a
Cartan subspace. We say that the pair (or the automorphism θ) is quasi-split if the
centralizer Cg0(c) is abelian. We say that it is split if Cg0(c) = 0.

An interesting question that we hope to address in the future is whether the other
two characterizations for quasi-splitness in the case of real forms are still applicable
here. We conclude this section by classifying the quasi-split Vinberg θ-pairs of the
cyclic quiver case from Example 5.

Proposition 11. Let (G0, g1) be the Vinberg θ-pair of G = SLn(C) from Example 5,
coming from the space of representations of a cyclic quiver where the dimension of
the i-th vertex is di. Then, it is quasi-split if and only if for some integer k ≥ 1 and
for all i ∈ {0, . . . ,m− 1} we have di ∈ {k, k + 1}, and it is split if and only if for all
i ∈ {0, . . . ,m− 1} we have di = 1.

Proof. We start recalling from Example 5 the description of the Cartan subspace c.
Assume without loss of generality that d0 is minimal (otherwise, rotate the pieces
Vj). Fix a splitting Vj = Uj ⊕ Wj of each vector space such that dimUj = d0,
and a basis Bj = {vj1, . . . , v

j
d0
} for each Uj . Consider, for λ = (λ1, . . . , λd0) ∈ Cd0 ,

the element fλ = (fλ
0 , . . . , f

λ
m−1) ∈ g1 defined by fλ

j (v
j
k) := λkv

j+1
k , fλ

j |Wj ≡ 0.
Then, c := {fλ : λ ∈ Cm}. From this description, as in the m = 2 case shown
in Example 28 above, elements in the centralizer need to be diagonal at each Uj

and are unrestricted at the Wj (because elements of c vanish at the Wj). That is,
the centralizer consists of elements of the form gµ = (gµ0 , . . . , g

µ
m−1) ∈ g0, where

µ = (µ0, . . . , µm−1) ∈ Cd0 , and each gµj ∈ End(Vj) is such that gµj (v
j
k) := µkv

j+1
k and

without extra restrictions for gµj |Wj (because of this, each µ gives many elements).
We also require that gµ ∈ End(

⊕
j Vj) is traceless. In short:

Cg0(c) = (Cd0 ⊕
m−1⊕
j=1

gldi−d0(C))0.

The subscript 0 means taking the traceless elements. This is abelian if and only
if di − d0 ∈ {0, 1} for all i, and is zero if and only if di = 1 for all i.
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5.4. Spectral data for type (k, k, . . . , k) cyclic SLmk(C)-
Higgs bundles

As established in the previous section, one of the examples of quasi-split Vinberg
θ-pairs occurs in the case of cyclic quiver representations of Example 5 when all the
dimensions are the same: d0 = · · · = dm−1 = k ≥ 1. This is a Vinberg θ-pair (G0, g1)
for SLmk(C). In this section we will extend the results of Schaposnik [45] for the case
m = 2 to show that a spectral description can be done as well. Using this description
we will also be able to recover the Arakelov–Milnor–Wood inequality of Theorem 8
for this case.

Recall that these cyclic Higgs bundles are of the form (E,φ) where E = W0 ⊕
· · ·⊕Wm−1 is a vector bundle with trivial determinant that splits as the direct sum of
rank k vector bundles, and φ ∈ H0(X,End(E)⊗KX) verifies φ(Wj) ⊆ Wj+1⊗KX for
j ∈ Z/mZ. As explained in Section 3.3, these are fixed points of the automorphism
(E,φ) 7→ (E, ζφ) where ζ is a primitive m-th root of unity. This is a consequence of
the fact that every A ∈ g1 is G0-conjugate to ζA. In particular this implies that the
characteristic polynomial of A is of the form

det(x Id−A) = xmk + p1(A)x
mk−m + · · ·+ pk−1(A)xm + pk(A).

That is, a polynomial in xm. The homogeneous polynomials p1, . . . , pk generate the
ring of invariants C[g1]G0 , as can be deduced from the explanation at the end of Ex-
ample 5. Thus the Hitchin map is again given by the coefficients of the characteristic
polynomial.

Fix a point a := (a1, . . . , ak) ∈ A, where ai ∈ H0(X,Kmi
X ). Define the spectral

curve Sa ⊆ KX as in Section 5.2 and assume that it is irreducible and smooth. Recall
that its genus is gSa = (mk)2(g − 1) + 1. Given a point (E,φ) ∈ h−1(a), the spectral
correspondence from Section 5.2 gives a line bundle L → Sa in the Prym variety
Prym(Sa, X). However, as it happened when specializing the correspondence from
GLn(C) to SLn(C), it will not be true in general that a line bundle L ∈ Prym(Sa, X)
produces a cyclic Higgs bundle of type (k, k, . . . , k) through the spectral correspon-
dence. In order to identify those who do, we first notice that the spectral curve
S := Sa is endowed with an order m automorphism

σ : S → S

λ 7→ ζλ.

That is, the automorphism which over a point of x permutes the eigenvalues via
multiplication by ζ. This is well defined as the section defining S is a polynomial on
λm. Then, we have:

Proposition 12. The line bundle L ∈ Prym(S,X) defines via the spectral correspon-
dence a cyclic SLmk(C)-Higgs bundle of type (k, k, . . . , k) if and only if σ∗L ≃ L.
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Proof. Suppose that σ∗L ≃ L. We have the diagram

L σ∗L L

S S S

≃

σId

σ̄

,

which lifts σ to an automorphism σ̄ of L, that is, gives a linearisation of the action
of Z/mZ on S to L. We will abuse notation and denote σ ∈ Aut(L) in what follows.
Denote by π : S → X the ramified covering. Note that π ◦ σ = π, so that if U ⊂ X is
open then π−1(U) ⊆ S is σ-invariant and open. This means that σ acts on the local
sections H0(π−1(U), L) (for a section s we set (σs)(p) := σ(s(σ−1(p)))). This is a
linear map of order m on a complex vector space and hence we can decompose

H0(π−1(U), L) =
m−1⊕
j=0

H0(π−1(U), L)j ,

where H0(π−1(U), L)j is the subspace where σ acts via multiplication by ζj . Set
E = π∗L the associated vector bundle via the spectral correspondence. The definition
of direct image yields H0(π−1(U), L) = H0(U,E), so we obtain a decomposition

H0(U,E) =
m−1⊕
j=0

H0(U,E)j .

As the open subset U ⊆ X is arbitrary, this induces a vector bundle decomposition
E =

⊕m−1
j=0 Wj . Now we see that each piece has rank k. Select a point x ∈ X outside

of the ramification locus of π : S → X and with ak(x) ̸= 0, so that π−1(x) ⊆ S
contains mk distinct nonzero eigenvalues which can be split into k groups of m which
are cyclically permuted by σ (the nonzero assumption is necessary so that they are
not fixed by σ). In other words,

π−1(x) = {e1, . . . , ek, σ(e1), . . . , σ(ek), . . . , σm−1(e1), . . . , σ
m−1(ek)}.

By looking at the corresponding eigenvectors in that order, we have that E|x =⊕m−1
j=0 Ck and σ acts on E|x by the cyclic permutation

(v0, . . . , vm−1) 7→ (vm−1, v0, . . . , vm−1).

Since Wj |x is the subspace where σ acts via multiplication by ζj , we can write it
explicitly as {(v, ζj(m−1)v, ζj(m−2)v, . . . , ζjv) : v ∈ Ck}, thus it is k-dimensional as
required. Recall as well that, via the spectral correspondence, φ is retrieved by the
direct image of the map given by multiplying by λ on sections of L. Since σ(λ) = ζλ,
sections where σ acts by ζj are sent to those where it acts as ζjζ = ζj+1. Through
the direct image this means φ(Wj) ⊆ Wj+1 ⊗KX , as desired.
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Conversely, if (E,φ) is cyclic, we have that (E,φ) ≃ (E, ζφ), implying that the
line bundle L → S of eigenspaces obtained by spectral correspondence has an induced
automorphism over σ in S (that is, the induced automorphism sends the eigenspace
for λ to that of ζλ). This means, with a diagram as in the start of the proof, that
σ∗L ≃ L.

Thus, the spectral correspondence bijects the locus in Prym(S,X) of line bun-
dles L that satisfy the additional condition σ∗L ≃ L with the cyclic SLmk(C)-Higgs
bundles of type (k, . . . , k). Now we will see how the degrees of each piece Wj can be
recovered, and we will use it to derive the bound on the Toledo invariant. It will be
convenient to introduce the quotient curve π̄ : S̄ := S/σ → X, a degree k ramified
cover of X inside Km

X , given by the equation

ξk + a1ξ
k−1 + · · ·+ ak−1ξ + ak = 0,

where ξ := λm. The quotient ρ : S → S̄ is a covering of degree m, which ramifies
only when λ = 0 (in this case, the fibre has a single point). In S, λ vanishes precisely
when ak ∈ H0(X,Kmk

X ) does, so there are degKmk
X = 2mk(g − 1) such points. The

Riemann–Hurwitz formula then yields the genus of the quotient curve

gS̄ = 1 + (g − 1)(mk2 − (m− 1)k).

As before, if U ⊆ S̄ is an open subset of the quotient curve, then ρ−1(U) is
σ-invariant and if L → S is a line bundle with σ∗L ≃ L we can decompose

H0(ρ−1(U), L) =
m−1⊕
j=0

H0(ρ−1(U), L)j .

Thus,

H0(U, ρ∗L) =

m−1⊕
j=0

H0(U, ρ∗L)
j ,

and we get a decomposition ρ∗L =
⊕m−1

j=0 Lj where each Lj → S̄ is a line bundle,
and by using the fact that π = π̄ ◦ ρ, we have π̄∗Lj = Wj .

The degrees of each Wj can be recovered by studying the points p ∈ S that are
fixed by σ, that is, those with λ(p) = 0 which occur when ak(p) = 0. This shows that
there are deg(Kkm

X ) = 2km(g−1) such points. When p is fixed by σ, the linearisation
on L gives an automorphism of order m of the one-dimensional fibre L|p, thus it is
given by multiplication by ζj for some j ∈ {0, . . . ,m− 1}. Let Mj be the number of
fixed points p where σ acts by ζj on L|p. We have

∑m−1
j=0 Mj = 2mk(g − 1).

We will need to use an auxiliary line bundle L′ → S̄ of large degree. This gives
the line bundle ρ∗L′ → S and, since ρ ◦ σ = ρ, we get σ∗(ρ∗L′) = (ρ ◦ σ)∗L′ = ρ∗L′,
so ρ∗L′ is also fixed by σ∗ and, as in the proof of the previous proposition, σ acts on
ρ∗L′ over σ : S → S. Since ρ∗L′|p = L′|ρ(p) and the action of σ on S̄ is the identity
(because λ 7→ ζλ becomes ξ = λm 7→ (ζλ)m = λm = ξ), we get that σ acts as the
identity on ρ∗L′|p. In short, we can consider the line bundle L ⊗ ρ∗L′ instead of L,
which is still σ∗-fixed and is such that σ acts via multiplication by ζj on the fibres of
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the same Mj fixed points where it did on L, while also having the advantage of its
degree being large.

If L′ has degree large enough for H1(S,L⊗ρ∗L′) = 0, and we set dj := dimH0(S,L⊗
ρ∗L′)j (this subspace defined exactly in the same way as for L), Riemann–Roch gives

(5.1)
m−1∑
j=0

dj = dimH0(S,L⊗ ρ∗L′) = degL+m degL′ −m2k2(g − 1).

In order to get additional equations, we will need the following result which is a
weaker version of [2, Theorem 4.12].

Proposition 13. Let X be a Riemann surface, F → X a holomorphic vector bundle,
f : X → X a holomorphic map with finitely many fixed points P ⊆ X and f̄ : F → F
a holomorphic bundle homomorphism over f . Suppose that H1(X,F ) = 0. Let
H0(f, f̄) denote the induced linear map on H0(X,F ). Then

trH0(f, f̄) =
∑
p∈P

trF |p
1− df |p

.

We apply this for the Riemann surface S, the vector bundle L ⊗ ρ∗L′, the maps
σi : S → S and the corresponding lifts σi : L⊗ρ∗L′ → L⊗ρ∗L′ for i ∈ {1, . . . ,m−1}.
Each σi acts via multiplication by ζij on H0(S,L⊗ ρ∗L′)j , so that

trH0(σ, σi) =
m−1∑
j=0

ζijdj .

On the other hand, as σi is multiplication by ζi on S, we get df |p = ζi. As σi|p = ζij Id
on the fibres of exactly Mj fixed points of σi, we can conclude by Proposition 13 that

(5.2)
m−1∑
j=0

ζijdj =
m−1∑
j=0

ζijMj

1− ζi
i ∈ {1, . . . ,m− 1}.

Using the m−1 equations in (5.2) together with the extra equation (5.1), we have
a linear system of m equations and m variables. Solving for dj requires multiplying
each of the m− 1 equations in (5.2) by ζ−ij and summing the m resulting equations.
The coefficient in dk is then

∑m−1
i=0 ζ−ijζik =

∑m−1
i=0 ζi(k−j), which is m if k = j and

0 otherwise. This results in

(5.3) dj = degL′ +
1

m

(
degL−m2k2(g − 1) +

m−1∑
l=0

αj,lMl

)
with

(5.4) αj,l :=

m−1∑
r=1

ζr(l−j)

1− ζr
= (l − j)− 1− m− 1

2
,
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where for an integer b ∈ Z the notation b̄ is the remainder of dividing b by m such that
1 ≤ b̄ ≤ m. This latter identity can be checked either via analytical (using residues)
or algebraic (using polynomial identities) methods.

Now we remove the dependency on the auxiliary line bundle L′. Recall the line
bundles Lj → S̄ from before, and note that H0(S,L ⊗ ρ∗L′)j = H0(S̄, Lj ⊗ L′) by
taking direct image via ρ. By Riemann–Roch (recall that the degree of L′ is large so
that H1(S̄, Lj ⊗ L′) = 0) we obtain

dj = dimH0(S,L⊗ ρ∗L′)j = dimH0(S̄, Lj ⊗ L′) =

= degLj + degL′ − (g − 1)(mk2 − (m− 1)k).

Using the above identity together with (5.3), we get

degLj = (g − 1)(mk2 − (m− 1)k) +
1

m

(
degL−m2k2(g − 1) +

m−1∑
l=0

αj,lMl

)
,

which means that

degWj = deg π̄∗Lj = degLj + k(g − 1)− (g − 1)(mk2 − (m− 1)k) =

=
1

m

(
degL−m2k2(g − 1) +

m−1∑
l=0

αj,lMl

)
+ k(g − 1).

We have thus proven the following.

Proposition 14. Let L → S be a line bundle with σ∗L ≃ L and consider the induced
type (k, k, . . . , k) cyclic SLmk(C)-Higgs bundle (E,φ) via the spectral correspondence,
with E =

⊕m−1
j=0 Wj the splitting into pieces of rank k with φ(Wj) ⊆ Wj+1 ⊗KX for

all j ∈ Z/mZ. Let Mj be the number of σ-fixed points p ∈ S such that the action of
σ on L|p is via multiplication by ζj. Let αj,l as in (5.4). Then, we have

degWj =
1

m

(
degL−m2k2(g − 1) +

m−1∑
l=0

αj,lMl

)
+ k(g − 1).

As an application of this, we can derive the bound on the Toledo invariant from
Theorem 8, as well as show the existence of an upper bound for this case. The bound
we will obtain is the coarse one that uses rankT (G0, g1) computed in Example 23.
Keeping the notation from previous proposition, recall from Example 21 that the
Toledo invariant in this case is given by

τ = 2
m−1∑
j=0

(
j − m− 1

2

)
degWj .

Since
∑m−1

j=0

(
j − m−1

2

)
= 0, after substituting the expression for the degrees given in

Proposition 14, we get

τ =
2

m

m−1∑
j=0

(
j − m− 1

2

)m−1∑
l=0

αj,lMl =
2

m

m−1∑
l=0

clMl,
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where cl :=
∑m−1

j=0

(
j − m−1

2

)
αj,l. Using the closed expression for αj,l given in (5.4),

we get
cl = −1

2
l2m+

1

2
lm2 − 1

12
m3 +

1

12
m.

The concave parabola defined by the quadratic equation on l given above has its
vertex at m

2 . This means that C := maxl∈{0,...,m−1}{|cl|} is bounded above by the
maximum of the absolute values of said parabola at 0, m − 1 and m

2 , which are
m(m−1)(m+1)

12 ,
∣∣∣m(m−1)(m−15)

12

∣∣∣ and m(m2+2)
24 , respectively. Since m ≥ 2, the largest of

these values is the second one and hence C ≤ m(m−1)(m+1)
12 . This finally yields

|τ | = 2

m

∣∣∣∣∣
m−1∑
l=0

clMl

∣∣∣∣∣ ≤ 2

m

m−1∑
l=0

|cl|Ml ≤
2C

m
·
m−1∑
l=0

Ml ≤

≤ 2

m
· m(m− 1)(m+ 1)

12
· 2km(g − 1) =

km(m− 1)(m+ 1)

6
(2g − 2),

which is the coarse Arakelov–Milnor–Wood inequality from Theorem 8 computed in
Example 23, together with a symmetric upper bound. The latter is not generally
attained, in fact, it can be refined by bounding maxl∈{0,...,m−1}{cl} (without the
absolute values) by the value m(m2+2)

24 of the parabola at the vertex, which matches
the one above for m = 2 but is tighter for m > 2.
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Conclusions

We have studied several aspects of the moduli spaces of θ-cyclic G-Higgs bundles,
which we defined as the image in M(G) of Higgs pairs associated to a Vinberg θ-pair,
a Lie theoretical object arising from a finite order automorphism of a complex Lie
group G. The study has taken two main directions. The first one has been about
a selected topological invariant on the resulting moduli space, the Toledo invariant,
which we have defined extending previously existing cases to our general context. This
extended definition is relevant, as we have evidenced providing a bound that holds
in the moduli spaces of cyclic Higgs bundles that reveals some rigidity phenomenon
when it is attained. We have explored this latter phenomenon as well, revealing that
the locus of cyclic Higgs bundles attaining the bound injects into the moduli space of
Higgs pairs for a smaller subgroup C ≤ G. We also provided a condition for the map
to be surjective.

The other direction has focused on the Hitchin map, a fibration that exists in
the moduli space of cyclic Higgs bundles onto an affine base. For standard G-Higgs
bundles its generic fibre is abelian, but for cyclic Higgs bundles this need not be true,
and we introduced the notion of quasi-split Vinberg θ-pairs as the natural candidates
for the fibre to be abelian. Then we explored a particular case of quasi-split Vinberg
θ-pair for the group G = SLn(C), in which we used spectral techniques to describe
the fibres and verify their abelianness.

There are still plenty of open questions and future directions that can be pursued.
Here we collect some:

• In the previously existing situations where a Toledo invariant was defined,
namely GR-Higgs bundles for a real form GR of hermitian type and fixed points
of the C∗-action, the Toledo invariant has an upper bound. In our proof for the
lower bound in Theorem 8, we saw that the proof breaks in the general case.
However, at the end of Section 5.4 we have seen examples of moduli spaces of
cyclic Higgs bundles which are not in the aforementioned two classes yet the
Toledo invariant has an upper bound. It would be interesting to understand in
which situations the Toledo invariant is bounded above.

• We have seen that for the locus of maximal cyclic Higgs bundles there exists a
Cayley correspondence that injects it into another moduli space, and we have

67
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shown that in some cases the map is bijective. However we have not yet found
any counterexample where the map is not surjective. Possible future work is to
study the surjectiveness of the map using diferent techniques than the ones used
here, namely the Hitchin–Kobayashi correspondence that fails in some cases.

• We have defined quasi-split Vinberg θ-pairs in terms of one of the many equiv-
alent definitions for quasi-splitness existing for real forms (cf. Section 5.2). We
are interested in what would be the natural extension for the other equivalent
definitions to cyclic Higgs bundles, if any.

• The description of the fibres of the Hitchin fibration for the remaining quasi-
split pairs of inner type in G = SLn(C), namely the KX -twisted cyclic quiver
representations of type (k+a1, k+a2, . . . , k+am) where ai ∈ {0, 1}. An approach
for this is to notice that the spectral curve has a component corresponding to
λr = 0 where r is the number of ai that are 1. For the involutive case (m = 2)
this means that one of the two factor subbundles has a 1-dimensional (r = 1)
kernel which can be quotiented out to reduce to the (k, k) case, but in general
this approach is more subtle.

• A general study for the Hitchin fibration on the moduli space of cyclic Higgs
bundles, first for quasi-split Vinberg pairs and then in more generality. Here
we have restricted to the case of cyclic quiver representations corresponding to
a quasi-split pair of G = SLn(C). The more general case could involve more
machinery that has been used for m = 2, such as cameral curves [23] or regular
quotients [29].

• We have seen that the Hitchin map for G-Higgs bundles has a section, the
Hitchin section, whose image produces a connected component of the moduli
space with many interesting properties. For the involutive case of m = 2,
there also exists a section known as Hitchin–Kostant–Rallis section [24]. An
important future direction is the construction of a section of the Hitchin map,
relying on the fact that the quotient map g1 → g1//G0 has a section, known as
Kostant–Weierstrass section.

• If G is complex semisimple, the only examples of θ-cyclic G-Higgs bundles
observed so far inside of the Hitchin section for G-Higgs bundles happen to be
quasi-split. It would be interesting to see to what extent this holds.

• As mentioned in the introduction, cyclic Higgs bundles have appeared in the
literature in different contexts. It would be nice to explore how the aspects intro-
duced here (such as the Toledo invariant) can be interpreted in those pictures.
For example, Baraglia [3] identified that the solutions to affine Toda equations
on the Hitchin component were precisely the cyclic Higgs bundles therein. This
allows to conclude that a (naturally associated to a Higgs bundle) harmonic
map from the universal cover X̃ of the Riemann surface to the symmetric space
GR/K where GR ≤ G is the split real form and K ≤ GR is a maximal compact,
lifts in the case of cyclic Higgs bundles in the Hitchin section to a harmonic map
τ ′ : X̃ → GR/K ′ for a smaller subgroup K ′ ≤ K. It would be interesting to
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study this phenomenon in general for our notion of cyclic Higgs bundles (which
exists outside of the Hitchin section).

• When m = 2, we have seen in Example 4 that any Vinberg pair is related
to a real form GR ⊆ G and the resulting moduli space M(GR) is particularly
interesting because of its relation with the theory of representations of π1(X)
in GR. An interesting question would be to study θ-cyclic Higgs bundles inside
of M(GR), corresponding to fixed points of the action of finite cyclic groups
in M(GR). If the real form is associated to an involution θ′ ∈ Aut2(G), the
problem is then related to the study of the finite order automorphisms θ ∈
Autm(G) such that θ and θ′ commute. In terms of gradings of g, this is nothing
but a (Z/mZ × Z/2Z)-grading of g, which for odd values of m we know how
to classify (as they agree with Z/2mZ-gradings) but for even values of m the
classification is more complicated.

• We have shown that the Toledo invariant is bounded and a that a Cayley
correspondence happens, using the fact that the corresponding Vinberg θ-pair
is special. It would be interesting to study the Lie theory and invariant theory
for these kind of special pairs more in detail. For example, giving additional
properties of the Cartan subspaces or the Kostant–Weierstrass section in the
special case may help with the study of the Hitchin section in this case.
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