Cyclic Higgs bundles and the Toledo invariant

Miguel González (ICMAT) Joint work with Oscar García-Prada

Working Seminar ISTA

January 2024

Miguel González

Cyclic Higgs bundles and the Toledo invariant

Motivation

- ${\it G}$ is a complex semisimple group, ${\mathfrak g}$ its Lie algebra.
 - Study the subvarieties of **cyclic Higgs bundles** inside the moduli space $\mathcal{M}(G)$ of polystable *G*-Higgs bundles on smooth projective curve *C*.

Motivation

- ${\it G}$ is a complex semisimple group, ${\mathfrak g}$ its Lie algebra.
 - Study the subvarieties of **cyclic Higgs bundles** inside the moduli space $\mathcal{M}(G)$ of polystable *G*-Higgs bundles on smooth projective curve *C*.
 - Recall that a G-Higgs bundle (E, φ) is a holomorphic principal G-bundle over C with a section φ ∈ H⁰(C, E(g) ⊗ K_C).
 - E.g G = SL_n then E is a rank n vector bundle with det E = O_C and φ : E → E ⊗ K_C a traceless bundle morphism.

Motivation

- ${\it G}$ is a complex semisimple group, ${\mathfrak g}$ its Lie algebra.
 - Study the subvarieties of **cyclic Higgs bundles** inside the moduli space $\mathcal{M}(G)$ of polystable *G*-Higgs bundles on smooth projective curve *C*.
 - Recall that a G-Higgs bundle (E, φ) is a holomorphic principal G-bundle over C with a section φ ∈ H⁰(C, E(g) ⊗ K_C).
 - E.g $G = SL_n$ then E is a rank n vector bundle with det $E = \mathcal{O}_C$ and $\varphi : E \to E \otimes K_C$ a traceless bundle morphism.

Definition

Let $\theta \in \operatorname{Aut}_m(G)$ be an order *m* automorphism, $\zeta \in \mathbb{C}^{\times}$ a primitive *m*-th root of unity. Cyclic Higgs bundles are the fixed points of the $\mathbb{Z}/m\mathbb{Z}$ -action generated by

$$(E,\varphi)\mapsto (\theta(E),\zeta^k d\theta(\varphi)).$$

- 4 回 ト 4 三 ト 4 三 ト

Vinberg θ -pairs

• θ induces a $\mathbb{Z}/m\mathbb{Z}$ -grading

$$\mathfrak{g} = igoplus_{j \in \mathbb{Z}/m\mathbb{Z}} \hat{\mathfrak{g}}_j, \quad [\hat{\mathfrak{g}}_i, \hat{\mathfrak{g}}_j] \subseteq \hat{\mathfrak{g}}_{i+j}$$

• The adjoint representation restricts to a representation of any closed subgroup H with $G_0 \subseteq H \subseteq G_\theta = N_G(G^\theta)$, e.g. $H = G^\theta$, on $\hat{\mathfrak{g}}_k$.

Vinberg θ -pairs

• θ induces a $\mathbb{Z}/m\mathbb{Z}$ -grading

$$\mathfrak{g} = \bigoplus_{j \in \mathbb{Z}/m\mathbb{Z}} \hat{\mathfrak{g}}_j, \quad [\hat{\mathfrak{g}}_i, \hat{\mathfrak{g}}_j] \subseteq \hat{\mathfrak{g}}_{i+j}$$

- The adjoint representation restricts to a representation of any closed subgroup H with $G_0 \subseteq H \subseteq G_\theta = N_G(G^\theta)$, e.g. $H = G^\theta$, on $\hat{\mathfrak{g}}_k$.
- $(H, \hat{\mathfrak{g}}_k)$ is called **Vinberg** θ -pair.
- (E, φ) with E an H-bundle and $\varphi \in H^0(E(\hat{\mathfrak{g}}_k) \otimes K_C)$ is called $(H, \hat{\mathfrak{g}}_k)$ -**Higgs pair**. Moduli spaces $\mathcal{M}(H, \hat{\mathfrak{g}}_k)$.

• θ induces a $\mathbb{Z}/m\mathbb{Z}$ -grading

$$\mathfrak{g} = \bigoplus_{j \in \mathbb{Z}/m\mathbb{Z}} \hat{\mathfrak{g}}_j, \quad [\hat{\mathfrak{g}}_i, \hat{\mathfrak{g}}_j] \subseteq \hat{\mathfrak{g}}_{i+j}$$

- The adjoint representation restricts to a representation of any closed subgroup H with $G_0 \subseteq H \subseteq G_\theta = N_G(G^\theta)$, e.g. $H = G^\theta$, on $\hat{\mathfrak{g}}_k$.
- $(H, \hat{\mathfrak{g}}_k)$ is called **Vinberg** θ -pair.
- (E, φ) with E an H-bundle and $\varphi \in H^0(E(\hat{\mathfrak{g}}_k) \otimes K_C)$ is called $(H, \hat{\mathfrak{g}}_k)$ -Higgs pair. Moduli spaces $\mathcal{M}(H, \hat{\mathfrak{g}}_k)$.

Theorem (García-Prada–Ramanan, 2019)

The image of $\mathcal{M}(G^{\theta}, \hat{\mathfrak{g}}_k) \to \mathcal{M}(G)$ consists of cyclic Higgs bundles. All stable and simple cyclic Higgs bundles for θ and k are obtained by using the θ' , up to equivalence, on the same outer class as θ .

- We will focus on the study of $\mathcal{M}(G_0, \hat{\mathfrak{g}}_1)$.
- G_0 because it is easier to work with. If G is s.c. then $G_0 = G^{\theta}$.
- ĝ₁ because if we had ĝ_k for any other k ≠ 0 we can pass to a subalgebra, and for k = 0 it is just M(G₀).

- We will focus on the study of $\mathcal{M}(G_0, \hat{\mathfrak{g}}_1)$.
- G_0 because it is easier to work with. If G is s.c. then $G_0 = G^{\theta}$.
- $\hat{\mathfrak{g}}_1$ because if we had $\hat{\mathfrak{g}}_k$ for any other $k \neq 0$ we can pass to a subalgebra, and for k = 0 it is just $\mathcal{M}(G_0)$.

Some more reasons why $\mathcal{M}(G_0, \hat{\mathfrak{g}}_1)$ is important:

For m = 2 we can find an antiholomorphic involution τ for the compact form, with τθ = θτ =: σ. Let G^ℝ := G^σ be the real form. Then M(G₀, ĝ₁) = M(G^ℝ), G^ℝ-Higgs bundles.

- We will focus on the study of $\mathcal{M}(G_0, \hat{\mathfrak{g}}_1)$.
- G_0 because it is easier to work with. If G is s.c. then $G_0 = G^{\theta}$.
- ĝ₁ because if we had ĝ_k for any other k ≠ 0 we can pass to a subalgebra, and for k = 0 it is just M(G₀).

Some more reasons why $\mathcal{M}(G_0, \hat{\mathfrak{g}}_1)$ is important:

- For m = 2 we can find an antiholomorphic involution τ for the compact form, with τθ = θτ =: σ. Let G^ℝ := G^σ be the real form. Then M(G₀, ĝ₁) = M(G^ℝ), G^ℝ-Higgs bundles.
- The invariant polynomial algebra $\mathbb{C}[\hat{\mathfrak{g}}_1]^{G_0}$ is a finitely generated polynomial algebra (Vinberg, 1976). Thus there is a Hitchin map (very few representations have this).

- We will focus on the study of $\mathcal{M}(G_0, \hat{\mathfrak{g}}_1)$.
- G_0 because it is easier to work with. If G is s.c. then $G_0 = G^{\theta}$.
- $\hat{\mathfrak{g}}_1$ because if we had $\hat{\mathfrak{g}}_k$ for any other $k \neq 0$ we can pass to a subalgebra, and for k = 0 it is just $\mathcal{M}(G_0)$.

Some more reasons why $\mathcal{M}(G_0, \hat{\mathfrak{g}}_1)$ is important:

- For m = 2 we can find an antiholomorphic involution τ for the compact form, with τθ = θτ =: σ. Let G^ℝ := G^σ be the real form. Then M(G₀, ĝ₁) = M(G^ℝ), G^ℝ-Higgs bundles.
- The invariant polynomial algebra $\mathbb{C}[\hat{\mathfrak{g}}_1]^{G_0}$ is a finitely generated polynomial algebra (Vinberg, 1976). Thus there is a Hitchin map (very few representations have this).
- For even m = 2m' they live inside the Lagrangians fixed by $(\theta^{m'}(E), -d\theta^{m'}(\varphi)).$

通 ト イヨ ト イヨト

- We will focus on the study of $\mathcal{M}(G_0, \hat{\mathfrak{g}}_1)$.
- G_0 because it is easier to work with. If G is s.c. then $G_0 = G^{\theta}$.
- ĝ₁ because if we had ĝ_k for any other k ≠ 0 we can pass to a subalgebra, and for k = 0 it is just M(G₀).

Some more reasons why $\mathcal{M}(G_0, \hat{\mathfrak{g}}_1)$ is important:

- For m = 2 we can find an antiholomorphic involution τ for the compact form, with τθ = θτ =: σ. Let G^ℝ := G^σ be the real form. Then M(G₀, ĝ₁) = M(G^ℝ), G^ℝ-Higgs bundles.
- The invariant polynomial algebra $\mathbb{C}[\hat{\mathfrak{g}}_1]^{G_0}$ is a finitely generated polynomial algebra (Vinberg, 1976). Thus there is a Hitchin map (very few representations have this).
- For even m = 2m' they live inside the Lagrangians fixed by $(\theta^{m'}(E), -d\theta^{m'}(\varphi)).$
- Related to different constructions such as certain local systems (Simpson, 2006), solutions to the *affine Toda* equations (Baraglia, 2015), *cyclic surfaces* (Labourie, 2017)...

• We will **make use of the theory of** Z-gradings of the Lie algebra g.

$$\mathfrak{g}=igoplus_{j\in\mathbb{Z}}\mathfrak{g}_j,\quad [\mathfrak{g}_i,\mathfrak{g}_j]\subseteq\mathfrak{g}_{i+j}.$$

- Similarly we have representations (G_0, \mathfrak{g}_k) called Vinberg \mathbb{C}^{\times} -pairs. We will use (G_0, \mathfrak{g}_1) .
- The corresponding Higgs bundles inside M(G) are the Hodge bundles, i.e. fixed points of the C[×]-action (Simpson, 1992).

Relating the gradings

- How do we get \mathbb{Z} -gradings to appear in our setting?
- From a Z-grading we can project the indices to Z/mZ and get a Z/mZ-grading. (i.e. from C[×] → Aut(g) we precompose with μ_m → C[×]).

$$\hat{\mathfrak{g}}_k := igoplus_{j\equiv k \mod m} \mathfrak{g}_j.$$

Relating the gradings

- How do we get \mathbb{Z} -gradings to appear in our setting?
- From a Z-grading we can project the indices to Z/mZ and get a Z/mZ-grading. (i.e. from C[×] → Aut(g) we precompose with μ_m → C[×]).

$$\hat{\mathfrak{g}}_k := \bigoplus_{j \equiv k \mod m} \mathfrak{g}_j.$$

• We want $\hat{\mathfrak{g}}_0 = \mathfrak{g}_0$ (in order to have the same structure group G_0) so we will look at gradings

$$\mathfrak{g} = \mathfrak{g}_{1-m} \oplus \cdots \oplus \mathfrak{g}_{m-1}.$$

• Then
$$\hat{\mathfrak{g}}_j = \mathfrak{g}_j \oplus \mathfrak{g}_{j-m}$$
 for $j \neq 0$.

- Real forms of Hermitian type. Let G^ℝ ⊆ G be a real form of Hermitian type. H^ℝ ⊆ G^ℝ its maximal compact subgroup.
- This means that $G^{\mathbb{R}}/H^{\mathbb{R}}$ is a Hermitian symmetric space so we get a decomposition of the complexified tangent space at the identity, $\hat{\mathfrak{g}}_1 = \mathfrak{g}_1 \oplus \mathfrak{g}_{-1}$ in the $\pm i$ -eigenspaces of the complex structure.

- Real forms of Hermitian type. Let G^ℝ ⊆ G be a real form of Hermitian type. H^ℝ ⊆ G^ℝ its maximal compact subgroup.
- This means that $G^{\mathbb{R}}/H^{\mathbb{R}}$ is a Hermitian symmetric space so we get a decomposition of the complexified tangent space at the identity, $\hat{\mathfrak{g}}_1 = \mathfrak{g}_1 \oplus \mathfrak{g}_{-1}$ in the $\pm i$ -eigenspaces of the complex structure.
- This results in $\mathfrak{g} = \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1$ inducing the $\mathbb{Z}/2\mathbb{Z}$ -grading, as desired.
- They are: SU(p,q), SO(2, n), $Sp(2n, \mathbb{R})$, $SO^{*}(2n)$, $E_{6}(-14)$ and $E_{7}(-25)$.

- Quaternion-Kähler symmetric spaces. Let G^ℝ ⊆ G be a real form of *quaternionic* type. H^ℝ ⊆ G^ℝ its maximal compact subgroup.
- By this we mean that G^ℝ/H^ℝ is a quaternion-Kähler symmetric space, i.e. its holonomy is contained in Sp(n) Sp(1) ⊆ SO(4n).

- Quaternion-Kähler symmetric spaces. Let G^ℝ ⊆ G be a real form of *quaternionic* type. H^ℝ ⊆ G^ℝ its maximal compact subgroup.
- By this we mean that G^ℝ/H^ℝ is a quaternion-Kähler symmetric space, i.e. its holonomy is contained in Sp(n) Sp(1) ⊆ SO(4n).
- In this case we get decompositions of the symmetric pair $\hat{\mathfrak{g}}_0 = \mathfrak{g}_{-2} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_2$ and $\hat{\mathfrak{g}}_1 = \mathfrak{g}_1 \oplus \mathfrak{g}_{-1}$ given by ad(*I*) where $I \in \hat{\mathfrak{g}}_0$ is one of the almost complex structures.
- We can then consider the associated cyclic grading for m = 3. Note that for this grading $\mathcal{M}(G_0, \hat{\mathfrak{g}}_1)$ is **not** $\mathcal{M}(G^{\mathbb{R}})$.

- The quaternionic $\mathbb{Z}\text{-}\mathsf{grading}$ from before exists in every type.
- Alternate construction: fix a Cartan subalgebra t ⊆ g and simple roots Π ⊆ Δ(g, t) =: Δ. Consider the highest root β ∈ Δ.
- Normalise the dual Killing form so that $B^*(\beta,\beta) = 2$. Then for any other root we have $B^*(\alpha,\beta) \in \{-2,-1,0,1,2\}$.

- The quaternionic $\mathbb{Z}\text{-}\mathsf{grading}$ from before exists in every type.
- Alternate construction: fix a Cartan subalgebra t ⊆ g and simple roots Π ⊆ Δ(g, t) =: Δ. Consider the highest root β ∈ Δ.
- Normalise the dual Killing form so that $B^*(\beta,\beta) = 2$. Then for any other root we have $B^*(\alpha,\beta) \in \{-2,-1,0,1,2\}$.
- This induces the quaternionic \mathbb{Z} -grading by assigning degree $B^*(\alpha, \beta)$ to \mathfrak{g}_{α} .
- The corresponding real forms are SU(2, n), SO(4, n), Sp(2, 2n), $E_6(2)$, $E_7(-5)$, $E_8(-24)$, $F_4(4)$ and $G_2(2)$.

Examples IV

• Take $G = SL_n$ and decompose its standard representation $V = V_0 \oplus \cdots \oplus V_{m-1}$ in pieces of dimensions d_i , $\sum_i d_i = n$.

(B)

Examples IV

- Take $G = SL_n$ and decompose its standard representation $V = V_0 \oplus \cdots \oplus V_{m-1}$ in pieces of dimensions d_i , $\sum_i d_i = n$.
- We get a \mathbb{Z} -grading on $\mathfrak{g} = \mathfrak{sl}_n = \operatorname{End}_0(V)$ by

$$\mathfrak{g}_k = \mathfrak{sl}_n \cap \bigoplus_j \operatorname{End}(V_j, V_{j+k}).$$

• $G_0 = S(GL_{d_0} \times \cdots \times GL_{d_{m-1}})$, and \mathfrak{g}_1 endomorphisms of the form:

$$V_0 \xrightarrow{f_0} V_1 \xrightarrow{f_1} \dots \xrightarrow{f_{m-2}} V_{m-1}$$

Examples IV

- Take $G = SL_n$ and decompose its standard representation $V = V_0 \oplus \cdots \oplus V_{m-1}$ in pieces of dimensions d_i , $\sum_i d_i = n$.
- We get a \mathbb{Z} -grading on $\mathfrak{g} = \mathfrak{sl}_n = \operatorname{End}_0(V)$ by

$$\mathfrak{g}_k = \mathfrak{sl}_n \cap \bigoplus_j \operatorname{End}(V_j, V_{j+k}).$$

• $G_0 = S(GL_{d_0} \times \cdots \times GL_{d_{m-1}})$, and \mathfrak{g}_1 endomorphisms of the form:

$$V_0 \xrightarrow{f_0} V_1 \xrightarrow{f_1} \dots \xrightarrow{f_{m-2}} V_{m-1}$$

- A_m quiver (or linear quiver) representations.
- For m = 2, the Hermitian form SU(d₀, d₁). For m = 3 and dimensions (1, n, 1) it gives the quaternionic grading in type A.

Miguel González

• The associated $\mathbb{Z}/m\mathbb{Z}$ -grading is:

$$\hat{\mathfrak{g}}_k = \mathfrak{sl}_n \cap \bigoplus_{j \in \mathbb{Z}/m\mathbb{Z}} \operatorname{End}(V_j, V_{j+k}).$$

• $G_0 = S(GL_{d_0} \times \cdots \times GL_{d_{m-1}})$, and \mathfrak{g}_1 endomorphisms of the form:

• Cyclic quiver representations.

A B M A B M

 For g semisimple, given a Z-grading g = ⊕_kg_k there is D ∈ g₀ the grading element. Grading given by eigenspaces of ad(D).

- For g semisimple, given a Z-grading g = ⊕_kg_k there is D ∈ g₀ the grading element. Grading given by eigenspaces of ad(D).
- We can choose Cartan $\mathfrak{t} \subseteq \mathfrak{g}$ with $D \in \mathfrak{t}$ and simple roots $\Pi = \{\alpha_i\}$ with the integers $\alpha_i(D) \ge 0$.

- For g semisimple, given a Z-grading g = ⊕_kg_k there is D ∈ g₀ the grading element. Grading given by eigenspaces of ad(D).
- We can choose Cartan $\mathfrak{t} \subseteq \mathfrak{g}$ with $D \in \mathfrak{t}$ and simple roots $\Pi = \{\alpha_i\}$ with the integers $\alpha_i(D) \ge 0$.
- Then we get a labelling of the Dynkin diagram. Conversely such a labelling {p_i} induces a grading with g_{αi} ⊆ g_{pi}.

- For g semisimple, given a Z-grading g = ⊕_kg_k there is D ∈ g₀ the grading element. Grading given by eigenspaces of ad(D).
- We can choose Cartan t ⊆ g with D ∈ t and simple roots
 Π = {α_i} with the integers α_i(D) ≥ 0.
- Then we get a labelling of the Dynkin diagram. Conversely such a labelling {p_i} induces a grading with g_{αi} ⊆ g_{pi}.
- Example: linear quiver grading for dimensions (2, 1, 1). If the simple roots are α_i = e_{i+1} e_i then we have root vectors E_{αi} = E_{i+1,i} so the labelling is

(In general we will have a 1 each d_i dots).

Classification of $\mathbb{Z}/m\mathbb{Z}$ -gradings

- There is also a classification $\mathbb{Z}/m\mathbb{Z}$ -gradings by V. Kac.
- First for inner θ ∈ Int_m g. Let α₀ := −β be the lowest root and consider the Dynkin diagram for {α₀, α₁,..., α_r}, i.e. the affine Dynkin diagram.

Classification of $\mathbb{Z}/m\mathbb{Z}$ -gradings

- There is also a classification $\mathbb{Z}/m\mathbb{Z}$ -gradings by V. Kac.
- First for inner θ ∈ Int_m g. Let α₀ := −β be the lowest root and consider the Dynkin diagram for {α₀, α₁,..., α_r}, i.e. the affine Dynkin diagram.

Classification of $\mathbb{Z}/m\mathbb{Z}$ -gradings II

• A labelling $\{p_i\}$ of the affine Dynkin diagram corresponds to a $\mathbb{Z}/m\mathbb{Z}$ -grading where $m = \sum_i n_i p_i$ and the n_i are the smallest such that $0 = \sum_i n_i \alpha_i$.

Classification of $\mathbb{Z}/m\mathbb{Z}$ -gradings II

- A labelling $\{p_i\}$ of the affine Dynkin diagram corresponds to a $\mathbb{Z}/m\mathbb{Z}$ -grading where $m = \sum_i n_i p_i$ and the n_i are the smallest such that $0 = \sum_i n_i \alpha_i$.
- For example the cyclic quiver $\mathbb{Z}/3\mathbb{Z}$ -grading (2,1,1) from before is:

since the lowest root vector is $E_{1,4}$. In general we will have a 1 each d_i dots.

• The quaternionic grading is inner, obtained by labelling α_0 and its adjacents with a 1.

Classification of $\mathbb{Z}/m\mathbb{Z}$ -gradings II

- A labelling $\{p_i\}$ of the affine Dynkin diagram corresponds to a $\mathbb{Z}/m\mathbb{Z}$ -grading where $m = \sum_i n_i p_i$ and the n_i are the smallest such that $0 = \sum_i n_i \alpha_i$.
- For example the cyclic quiver $\mathbb{Z}/3\mathbb{Z}\text{-}\mathsf{grading}\ (2,1,1)$ from before is:

since the lowest root vector is $E_{1,4}$. In general we will have a 1 each d_i dots.

- The quaternionic grading is inner, obtained by labelling α_0 and its adjacents with a 1.
- In both cases we can now clearly see that it comes from a Z-grading given by looking at the regular Dynkin diagram inside of the affine one.

Miguel González

14 / 33

Classification of $\mathbb{Z}/m\mathbb{Z}$ -gradings III

We have just observed:

Proposition

Every inner $\mathbb{Z}/m\mathbb{Z}$ -grading comes from a \mathbb{Z} -grading.

4 3 4 3 4 3 4

Classification of $\mathbb{Z}/m\mathbb{Z}$ -gradings III

We have just observed:

Proposition

Every inner $\mathbb{Z}/m\mathbb{Z}$ -grading comes from a \mathbb{Z} -grading.

However, recall that we want $\mathfrak{g} = \mathfrak{g}_{1-m} \oplus \cdots \oplus \mathfrak{g}_{m-1}$ so that $\hat{\mathfrak{g}}_0 = \mathfrak{g}_0$.

Proposition

The \mathbb{Z} -grading obtained before is of the desired form if and only if $p_0 > 0$.
Classification of $\mathbb{Z}/m\mathbb{Z}$ -gradings III

We have just observed:

Proposition

Every inner $\mathbb{Z}/m\mathbb{Z}$ -grading comes from a \mathbb{Z} -grading.

However, recall that we want $\mathfrak{g} = \mathfrak{g}_{1-m} \oplus \cdots \oplus \mathfrak{g}_{m-1}$ so that $\hat{\mathfrak{g}}_0 = \mathfrak{g}_0$.

Proposition

The \mathbb{Z} -grading obtained before is of the desired form if and only if $p_0 > 0$.

In particular, if the lowest root can be carried to a simple root with $p_i > 0$ via an automorphism of the affine Dynkin diagram (\iff we have $n_i = 1$ and $p_i > 0$ for some *i*), we can always find such a grading. E.g. we can always do it in type *A*.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- What about gradings that are not inner?
- They are classified by labellings of Kac diagrams, which are obtained by taking a Dynkin automorphism s in the outer class and considering the action of the disconnected torus S = T × Z/qZ where T ⊆ C_{Aut(g)}(s) is a maximal torus and Z/qZ acts via s (so q = ord(s)). An affine Dynkin diagram is constructed for this action to give the Kac diagram.

- What about gradings that are not inner?
- They are classified by labellings of Kac diagrams, which are obtained by taking a Dynkin automorphism s in the outer class and considering the action of the disconnected torus S = T × Z/qZ where T ⊆ C_{Aut(g)}(s) is a maximal torus and Z/qZ acts via s (so q = ord(s)). An affine Dynkin diagram is constructed for this action to give the Kac diagram.
- These never come from \mathbb{Z} -gradings because the map $\mathbb{C}^{\times} \to \operatorname{Aut}(\mathfrak{g})$ giving a \mathbb{Z} -grading goes into $\operatorname{Int}(\mathfrak{g})$.

The Toledo character

Recall the setup: G complex semisimple, θ ∈ Aut_m(G) inducing a Z/mZ-grading on the Lie algebra g coming from a Z-grading g = g_{1-m} ⊕ · · · ⊕ g_{m-1} with grading element D. Let B be the Killing form or any Ad-invariant non-degenerate bilinear form.

The Toledo character

Recall the setup: G complex semisimple, θ ∈ Aut_m(G) inducing a Z/mZ-grading on the Lie algebra g coming from a Z-grading g = g_{1-m} ⊕ · · · ⊕ g_{m-1} with grading element D. Let B be the Killing form or any Ad-invariant non-degenerate bilinear form.

Definition

The **Toledo character** $\chi_T : \mathfrak{g}_0 \to \mathbb{C}$ is defined by $x \mapsto \lambda_B \cdot B(D, x)$.

Recall the setup: G complex semisimple, θ ∈ Aut_m(G) inducing a Z/mZ-grading on the Lie algebra g coming from a Z-grading g = g_{1-m} ⊕ · · · ⊕ g_{m-1} with grading element D. Let B be the Killing form or any Ad-invariant non-degenerate bilinear form.

Definition

The **Toledo character** $\chi_T : \mathfrak{g}_0 \to \mathbb{C}$ is defined by $x \mapsto \lambda_B \cdot B(D, x)$.

Here λ_B ∈ C[×] is a constant that makes it independent of the choice of B. If we want this to generalise the Toledo character for Hermitian real forms (Biquard–García-Prada–Rubio, 2017) we can choose λ_B := B^{*}(γ, γ) where γ is the longest root labelled with a 1 in the Z-grading.

 The first thing we can define with χ_T is a rank associated with every G₀-orbit in g₁.

4 3 4 3 4 3 4

 The first thing we can define with χ_T is a rank associated with every G₀-orbit in g₁.

Definition

Let $e \in \mathfrak{g}_1$. The **Toledo rank** of *e* is defined as:

$$\mathsf{rk}_{\mathcal{T}}(e) := rac{\chi_{\mathcal{T}}(h)}{2},$$

where (h, e, f) is an \mathfrak{sl}_2 -triple with $h \in \mathfrak{g}_0$ and $f \in \mathfrak{g}_{-1}$.

 The first thing we can define with χ_T is a rank associated with every G₀-orbit in g₁.

Definition

Let $e \in \mathfrak{g}_1$. The **Toledo rank** of *e* is defined as:

$$\mathsf{rk}_{\mathcal{T}}(e) := rac{\chi_{\mathcal{T}}(h)}{2},$$

where (h, e, f) is an \mathfrak{sl}_2 -triple with $h \in \mathfrak{g}_0$ and $f \in \mathfrak{g}_{-1}$.

- It is well defined and constant on G_0 orbits.
- There are finitely many orbits so it is bounded. The maximum is denoted by rk_T(G₀, g₁) and is attained precisely at the unique open orbit Ω ⊆ g₁. The minimum is 0.

The Toledo rank II

• For example, in the linear quivers \mathbb{Z} -grading, an element $e \in \mathfrak{g}_1$ is defined by maps $f_i : V_i \to V_{i+1}$. The Toledo rank is a linear combinantion of the ranks of $f_{r,s} := f_s \circ \cdots \circ f_{r+1} \circ f_r$. If m = 2 it is just rk f where $f : V_0 \to V_1$.

The Toledo rank II

- For example, in the linear quivers \mathbb{Z} -grading, an element $e \in \mathfrak{g}_1$ is defined by maps $f_i : V_i \to V_{i+1}$. The Toledo rank is a linear combinantion of the ranks of $f_{r,s} := f_s \circ \cdots \circ f_{r+1} \circ f_r$. If m = 2 it is just rk f where $f : V_0 \to V_1$.
- Since it only depends on the G₀ orbit, we can define the Toledo rank of a Higgs field φ ∈ H⁰(E(𝔅₁) ⊗ K_C) appearing in a (G₀, 𝔅₁)-Higgs bundle by:

$$\mathsf{rk}_{\mathcal{T}}(\varphi) := \mathsf{rk}_{\mathcal{T}}(\varphi(c)),$$

for generic $c \in C$.

The Toledo rank II

- For example, in the linear quivers \mathbb{Z} -grading, an element $e \in \mathfrak{g}_1$ is defined by maps $f_i : V_i \to V_{i+1}$. The Toledo rank is a linear combinantion of the ranks of $f_{r,s} := f_s \circ \cdots \circ f_{r+1} \circ f_r$. If m = 2 it is just rk f where $f : V_0 \to V_1$.
- Since it only depends on the G₀ orbit, we can define the Toledo rank of a Higgs field φ ∈ H⁰(E(𝔅₁) ⊗ K_C) appearing in a (G₀, 𝔅₁)-Higgs bundle by:

$$\mathsf{rk}_{\mathcal{T}}(\varphi) := \mathsf{rk}_{\mathcal{T}}(\varphi(\mathbf{c})),$$

for generic $c \in C$.

In our case of interest, *M*(*G*₀, ĝ₁), we can decompose the Higgs field φ = φ⁺ + φ⁻ according to the decomposition ĝ₁ = g₁ ⊕ g_{1-m} and compute rk_T(φ⁺).

The Toledo invariant

• Choose a positive integer $q \in \mathbb{Z}_{>0}$ so that $q\chi_T$ lifts to $\tilde{\chi}_T : G_0 \to \mathbb{C}^{\times}$.

Definition

Let (E, φ) be a $(G_0, \hat{\mathfrak{g}}_1)$ -Higgs pair. Its **Toledo invariant** is defined as

$$r(E, arphi) := rac{\deg(E imes_{ ilde{\chi}_{\mathcal{T}}} \mathbb{C}^{ imes})}{q}$$

э

• • = • • = •

The Toledo invariant

• Choose a positive integer $q \in \mathbb{Z}_{>0}$ so that $q\chi_T$ lifts to $\tilde{\chi}_T : G_0 \to \mathbb{C}^{\times}$.

Definition

Let (E, φ) be a $(G_0, \hat{\mathfrak{g}}_1)$ -Higgs pair. Its **Toledo invariant** is defined as $deg(E \times \mathbb{C}^{\times})$

$$\tau(E,\varphi) := \frac{\deg(E \times_{\tilde{\chi}_{\mathcal{T}}} \mathbb{C}^{\times})}{q}$$

- It was introduced and studied in the spaces M(G₀, g₁) in (Biquard-Collier-García-Prada-Toledo, 2023).
- Generalises the Toledo invariant for Higgs bundles for Hermitian real forms studied both from the representation and Higgs bundle points of view in (Turaev, 1984), (Domic–Toledo, 1987), (Bradlow–García-Prada–Gothen, 2001 & 2003), (Burger–Iozzi–Wienhard 2003 & 2010), (Biquard–García-Prada–Rubio, 2017).

The Toledo invariant, example

• Consider the grading for cyclic quiver representations with dimensions d_i . In this case a $\mathcal{M}(G_0, \hat{\mathfrak{g}}_1)$ -Higgs bundle can be seen as a rank n vector bundle $E := E_0 \oplus \cdots \oplus E_{m-1}$ with rank $E_i = d_i$ and det $E = \mathcal{O}_C$, and a bundle morphism $\varphi : E \to E \otimes K_C$ such that $\varphi(E_j) \subseteq E_{j+1} \otimes K_C$ (with cyclic indices).

The Toledo invariant, example

- Consider the grading for cyclic quiver representations with dimensions d_i . In this case a $\mathcal{M}(G_0, \hat{\mathfrak{g}}_1)$ -Higgs bundle can be seen as a rank n vector bundle $E := E_0 \oplus \cdots \oplus E_{m-1}$ with rank $E_i = d_i$ and det $E = \mathcal{O}_C$, and a bundle morphism $\varphi : E \to E \otimes K_C$ such that $\varphi(E_j) \subseteq E_{j+1} \otimes K_C$ (with cyclic indices).
- In this case

$$\tau(E,\varphi) = 2\sum_{j=0}^{m-1} (j-\alpha) \deg E_j,$$

where
$$\alpha = \frac{\sum_j d_j}{d_j}$$
.

The Toledo invariant, example

- Consider the grading for cyclic quiver representations with dimensions d_i . In this case a $\mathcal{M}(G_0, \hat{\mathfrak{g}}_1)$ -Higgs bundle can be seen as a rank n vector bundle $E := E_0 \oplus \cdots \oplus E_{m-1}$ with rank $E_i = d_i$ and det $E = \mathcal{O}_C$, and a bundle morphism $\varphi : E \to E \otimes K_C$ such that $\varphi(E_j) \subseteq E_{j+1} \otimes K_C$ (with cyclic indices).
- In this case

$$\tau(E,\varphi) = 2\sum_{j=0}^{m-1} (j-\alpha) \deg E_j,$$

where $\alpha = \frac{\sum_{j} d_{j}}{d_{i}}$.

• For m = 2 one gets $\tau = 2 \frac{d_0 \deg E_1 - d_1 \deg E_0}{d_0 + d_1}$. Using that $\deg E_0 = -\deg E_1$ it becomes $\tau = 2 \deg E_1$, the Toledo invariant for $SU(d_0, d_1)$ -Higgs bundles.

Milnor-type inequality

Theorem (García-Prada-G., 2023)

Let (E, φ) be a (λD) -semistable $(G_0, \hat{\mathfrak{g}}_1)$ -Higgs pair, $\lambda \in \mathbb{R}$. Then

 $\tau(E,\varphi) \ge -\operatorname{rk}_{T}(\varphi^{+})(2g-2) + \lambda(B^{*}(\gamma,\gamma)B(D,D) - \operatorname{rk}_{T}(\varphi^{+})).$

- In particular, if $(E, \varphi) \in \mathcal{M}(G_0, \hat{\mathfrak{g}}_1)$, then $\tau(E, \varphi) \ge -(2g-2) \operatorname{rk}_T(\varphi^+) \ge -(2g-2) \operatorname{rk}_T(G_0, \mathfrak{g}_1).$
- This contains previous Milnor-type inequalities (Hermitian real forms, (*G*₀, g₁)-Higgs pairs) and extends to the more general situation that we are considering.

A (1) < A (2) < A (2) </p>

Milnor-type inequality

Theorem (García-Prada–G., 2023)

Let (E, φ) be a (λD) -semistable $(G_0, \hat{\mathfrak{g}}_1)$ -Higgs pair, $\lambda \in \mathbb{R}$. Then

 $\tau(E,\varphi) \ge -\operatorname{rk}_{T}(\varphi^{+})(2g-2) + \lambda(B^{*}(\gamma,\gamma)B(D,D) - \operatorname{rk}_{T}(\varphi^{+})).$

- In particular, if $(E, \varphi) \in \mathcal{M}(G_0, \hat{\mathfrak{g}}_1)$, then $\tau(E, \varphi) \ge -(2g-2) \operatorname{rk}_T(\varphi^+) \ge -(2g-2) \operatorname{rk}_T(G_0, \mathfrak{g}_1).$
- This contains previous Milnor-type inequalities (Hermitian real forms, (*G*₀, g₁)-Higgs pairs) and extends to the more general situation that we are considering.
- Proof uses the existence of a relative invariant for the Toledo character, i.e. a rational map $F : \mathfrak{g}_1 \to \mathbb{C}$ such that $F(g \cdot v) = \tilde{\chi}_T(g)F(v)$.
- For the quiver representations case one can prove it *by hand* but it is very tedious.

3

A (1) × (2) × (3) × (4)

Extremal Toledo invariant

• For which $(G_0, \hat{\mathfrak{g}}_1)$ -Higgs pairs is the bound $\tau(E, \varphi) = -(2g-2) \operatorname{rk}_T(G_0, \mathfrak{g}_1)$ attained?

▶ ∢ ∃ ▶

Extremal Toledo invariant

- For which $(G_0, \hat{\mathfrak{g}}_1)$ -Higgs pairs is the bound $\tau(E, \varphi) = -(2g-2) \operatorname{rk}_T(G_0, \mathfrak{g}_1)$ attained?
- This locus inside $\mathcal{M}(G_0, \hat{\mathfrak{g}}_1)$ is denoted by $\mathcal{M}_{max}(G_0, \hat{\mathfrak{g}}_1)$.

Extremal Toledo invariant

- For which $(G_0, \hat{\mathfrak{g}}_1)$ -Higgs pairs is the bound $\tau(E, \varphi) = -(2g-2) \operatorname{rk}_T(G_0, \mathfrak{g}_1)$ attained?
- This locus inside $\mathcal{M}(G_0, \hat{\mathfrak{g}}_1)$ is denoted by $\mathcal{M}_{max}(G_0, \hat{\mathfrak{g}}_1)$.
- For $\mathcal{M}(G^{\mathbb{R}})$ where $G^{\mathbb{R}}$ is Hermitian of **tube type** the answer is given by the **Cayley correspondence**:

Theorem (Biquard–García-Prada–Rubio, 2017)

If $G^{\mathbb{R}}$ is a Hermitian real form of tube type, there exists $G^* \subseteq G^{\theta}$ (the noncompact dual) such that if the order of $\exp(2\pi i D) \in G_0$ divides (2g - 2), then:

$$\mathcal{M}_{max}(G^{\mathbb{R}}) \simeq \mathcal{M}_{K^2_C}(G^*).$$

Cayley correspondence for U(n, n)

- For example, consider $G^{\mathbb{R}} = U(n, n) \subseteq GL_{2n}$, which is Hermitian of tube type.
- The Cayley partner is $G^* = GL_n$.
- The corresponding $\mathbb{Z}/2\mathbb{Z}$ -grading is the cyclic quiver one in GL_{2n} for dimensions (n, n).

Cayley correspondence for U(n, n)

- For example, consider G^ℝ = U(n, n) ⊆ GL_{2n}, which is Hermitian of tube type.
- The Cayley partner is $G^* = GL_n$.
- The corresponding $\mathbb{Z}/2\mathbb{Z}$ -grading is the cyclic quiver one in GL_{2n} for dimensions (n, n).
- A U(n, n)-Higgs bundle (E, φ) ∈ M(U(n, n)) is a vector bundle E = E₀ ⊕ E₁ with rank E_i = n and a bundle map φ : E → E ⊗ K_C with φ(E_j) ⊆ E_{j+1} ⊗ K_C.
- Let $\varphi_j : E_j \to E_{j+1} \otimes K_C$. Then the Toledo invariant is extremal if φ_0 is an isomorphism. Then $E_0 \simeq E_1 \otimes K_C$.

Cayley correspondence for U(n, n)

- For example, consider G^ℝ = U(n, n) ⊆ GL_{2n}, which is Hermitian of tube type.
- The Cayley partner is $G^* = GL_n$.
- The corresponding $\mathbb{Z}/2\mathbb{Z}$ -grading is the cyclic quiver one in GL_{2n} for dimensions (n, n).
- A U(n, n)-Higgs bundle (E, φ) ∈ M(U(n, n)) is a vector bundle E = E₀ ⊕ E₁ with rank E_i = n and a bundle map φ : E → E ⊗ K_C with φ(E_j) ⊆ E_{j+1} ⊗ K_C.
- Let $\varphi_j : E_j \to E_{j+1} \otimes K_C$. Then the Toledo invariant is extremal if φ_0 is an isomorphism. Then $E_0 \simeq E_1 \otimes K_C$.
- The Cayley correspondence is given by $(E, \varphi) \mapsto (E_1, \varphi_0 \varphi_1)$.

く 戸 ト く ヨ ト く ヨ ト

• From now on, we will restrict to **JM-regular** (*G*₀, *g*₁). This condition generalises the tube type as well as the other conditions in the Cayley correspondence for Hermitian real forms.

- From now on, we will restrict to **JM-regular** (*G*₀, *g*₁). This condition generalises the tube type as well as the other conditions in the Cayley correspondence for Hermitian real forms.
- For example, the quiver grading when the vector (d_j) is palindromic and unimodal.

- From now on, we will restrict to **JM-regular** (*G*₀, *g*₁). This condition generalises the tube type as well as the other conditions in the Cayley correspondence for Hermitian real forms.
- For example, the quiver grading when the vector (d_j) is palindromic and unimodal.
- Recall the unique open orbit $\Omega \subseteq \mathfrak{g}_1$, characterised by $\mathsf{rk}_{\mathcal{T}}(\Omega) = \mathsf{rk}_{\mathcal{T}}(G_0, \mathfrak{g}_1).$
- $\tau(E, \varphi)$ attains the bound if and only if $\varphi^+(c) \in \Omega$ for all $c \in C$.
- Are there any such Higgs pairs?

Canonical uniformising Higgs pair

- Let $T = \mathbb{C}^{\times}$ and denote by E_T the frame bundle of $K_C^{\frac{-1}{2}}$.
- The canonical uniformising SL₂-Higgs bundle is $(E_T(SL_2), e)$, where (h, e, f) spans \mathfrak{sl}_2 and we identify $T = \exp(h) \subseteq SL_2$. Note that $E_T(\langle e \rangle) \otimes K_C \simeq \mathcal{O}_C$ so e is a Higgs field.

Canonical uniformising Higgs pair

- Let $T = \mathbb{C}^{\times}$ and denote by E_T the frame bundle of $K_C^{\frac{-1}{2}}$.
- The canonical uniformising SL₂-Higgs bundle is $(E_T(SL_2), e)$, where (h, e, f) spans \mathfrak{sl}_2 and we identify $T = \exp(h) \subseteq SL_2$. Note that $E_T(\langle e \rangle) \otimes K_C \simeq \mathcal{O}_C$ so e is a Higgs field.
- In terms of vector bundles, it is $K_C^{\frac{1}{2}} \oplus K_C^{-\frac{1}{2}}$ with the Higgs field $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$.

Canonical uniformising Higgs pair

- Let $T = \mathbb{C}^{\times}$ and denote by E_T the frame bundle of $\mathcal{K}_C^{-\frac{1}{2}}$.
- The canonical uniformising SL₂-Higgs bundle is $(E_T(SL_2), e)$, where (h, e, f) spans \mathfrak{sl}_2 and we identify $T = \exp(h) \subseteq SL_2$. Note that $E_T(\langle e \rangle) \otimes K_C \simeq \mathcal{O}_C$ so e is a Higgs field.
- In terms of vector bundles, it is $K_C^{\frac{1}{2}} \oplus K_C^{-\frac{1}{2}}$ with the Higgs field $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$.
- Now pick e ∈ Ω ⊆ g₁. By Jacobson-Morozov we can choose an sl₂-triple (h, e, f) with h ∈ g₀ and f ∈ g₋₁. This yields SL₂ ↔ G (or PSL₂ ↔ G).
- The resulting bundle $(E_T(G_0), e)$ lives in $\mathcal{M}_{max}(G_0, \hat{\mathfrak{g}}_1)$ by construction.

- Let $e \in \Omega \subseteq \mathfrak{g}_1$ and $Z := C_{G_0}(e)$.
- Let $V := \operatorname{Im}(\operatorname{ad}(e)^{m-1}|_{\mathfrak{g}_{1-m}} : \mathfrak{g}_{1-m} \to \mathfrak{g}_0)$. The map $\psi := \operatorname{ad}(e)^{m-1}|_{\mathfrak{g}_{1-m}}$ is an isomorphism onto V.

(B)

- Let $e \in \Omega \subseteq \mathfrak{g}_1$ and $Z := C_{G_0}(e)$.
- Let $V := \operatorname{Im}(\operatorname{ad}(e)^{m-1}|_{\mathfrak{g}_{1-m}} : \mathfrak{g}_{1-m} \to \mathfrak{g}_0)$. The map $\psi := \operatorname{ad}(e)^{m-1}|_{\mathfrak{g}_{1-m}}$ is an isomorphism onto V.
- Equivalently, V is g₀ ∩ W where W are the (2m − 1)-dimensional irreducible representations of sl₂ in g given by (h, e, f).

- Let $e \in \Omega \subseteq \mathfrak{g}_1$ and $Z := C_{G_0}(e)$.
- Let $V := \operatorname{Im}(\operatorname{ad}(e)^{m-1}|_{\mathfrak{g}_{1-m}} : \mathfrak{g}_{1-m} \to \mathfrak{g}_0)$. The map $\psi := \operatorname{ad}(e)^{m-1}|_{\mathfrak{g}_{1-m}}$ is an isomorphism onto V.
- Equivalently, V is g₀ ∩ W where W are the (2m − 1)-dimensional irreducible representations of sl₂ in g given by (h, e, f).
- The adjoint representation of $Z \subseteq G_0$ on \mathfrak{g}_0 has V as a subrepresentation.
- We will consider K_C^m -twisted (Z, V)-Higgs pairs $\mathcal{M}_{K_C^m}(Z, V)$.

We define the Cayley map by starting from a K^m_C-twisted (Z, V)-Higgs pair (E_Z, φ') and sending it to:

$$E := (E_T \otimes E_Z)(G_0)$$

 $\varphi := e + \psi^{-1}(\varphi').$

(We use that
$$T$$
 and Z are commuting subgroups of G_0).

æ

・ 同 ト ・ ヨ ト ・ ヨ ト …

We define the Cayley map by starting from a K^m_C-twisted (Z, V)-Higgs pair (E_Z, φ') and sending it to:

$$E:=(E_T\otimes E_Z)(G_0)$$

$$\varphi := e + \psi^{-1}(\varphi').$$

(We use that T and Z are commuting subgroups of G_0).

- As a map from isomorphism classes of K^m_C-twisted (Z, V)-Higgs pairs to (G₀, ĝ₁)-Higgs pairs with Toledo invariant equal to −(2g − 2) rk_T(G₀, g₁) it is **bijective**.
- Remains to see if it preserves polystability.
Cayley correspondence

- The inverse of the map given before (i.e. going from (G₀, ĝ₁) to (Z, V)) can be directly seen to preserve stability.
- The other direction is harder, in fact requires the gauge theoretical point of view (Hitchin–Kobayashi correspondence) and some assumption on (*Z*, *V*).

Cayley correspondence

- The inverse of the map given before (i.e. going from (G₀, ĝ₁) to (Z, V)) can be directly seen to preserve stability.
- The other direction is harder, in fact requires the gauge theoretical point of view (Hitchin–Kobayashi correspondence) and some assumption on (*Z*, *V*).

Theorem (García-Prada–G., 2023)

The Cayley map restricts to an embedding

$$\mathcal{M}_{max}(G_0, \hat{\mathfrak{g}}_1) \to \mathcal{M}_{K^m_C}(Z, V).$$

If (Z, V) is a Vinberg θ -pair, the previous embedding is an isomorphism.

 Generalises the Cayley correspondence for Hermitian real forms of tube type (Biquard–García-Prada–Rubio, 2017) and for (G₀, g₁)–Higgs pairs (Biquard–Collier–García-Prada–Toledo, 2023).

Miguel González

Cyclic Higgs bundles and the Toledo invariant

Cayley correspondence example

- Consider the quiver grading of dimensions (1,1,1) in GL₃.
- Fixing V₀ ≃ V₁ and V₁ ≃ V₂ gives e ∈ Ω ⊆ g₁. Thus Z = C_{G0}(e) = C[×] (embedded diagonally). V is a one-dimensional space corresponding to the weight 0 representation of C[×]. Also (Z, V) is a Vinberg pair.

Cayley correspondence example

- Consider the quiver grading of dimensions (1,1,1) in GL₃.
- Fixing V₀ ≃ V₁ and V₁ ≃ V₂ gives e ∈ Ω ⊆ g₁. Thus Z = C_{G0}(e) = C[×] (embedded diagonally). V is a one-dimensional space corresponding to the weight 0 representation of C[×]. Also (Z, V) is a Vinberg pair.
- The space of Higgs pairs with extremal Toledo invariant is *M*_{K³_C}(Z, V) which consists of pairs (L, φ) where L is a line bundle over C and φ ∈ H⁰(K³_C). I.e. it is Pic(C) × H⁰(K³_C).

Cayley correspondence example

- Consider the quiver grading of dimensions (1,1,1) in GL₃.
- Fixing $V_0 \simeq V_1$ and $V_1 \simeq V_2$ gives $e \in \Omega \subseteq \mathfrak{g}_1$. Thus $Z = C_{G_0}(e) = \mathbb{C}^{\times}$ (embedded diagonally). V is a one-dimensional space corresponding to the weight 0 representation of \mathbb{C}^{\times} . Also (Z, V) is a Vinberg pair.
- The space of Higgs pairs with extremal Toledo invariant is *M*_{K³_C}(*Z*, *V*) which consists of pairs (*L*, φ) where *L* is a line bundle over *C* and φ ∈ H⁰(K³_C). I.e. it is Pic(*C*) × H⁰(K³_C).
- Such a pair (L, φ) corresponds to $E = L \otimes (K_C \oplus \mathcal{O}_C \oplus K_C^{-1})$ with Higgs field $\begin{pmatrix} 0 & 0 & \varphi \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$.

Application to the quaternionic grading

- Consider the pair (G₀, ĝ₁) for the quaternionic / highest root grading.
- In this case we can use that dim $\mathfrak{g}_{-2} = 1$ and that (G_0, \mathfrak{g}_{-2}) is JM-regular to obtain:

Application to the quaternionic grading

- Consider the pair (G₀, ĝ₁) for the quaternionic / highest root grading.
- In this case we can use that dim $\mathfrak{g}_{-2} = 1$ and that (G_0, \mathfrak{g}_{-2}) is JM-regular to obtain:

Theorem (García-Prada–G., 2023)

Let $(E, \varphi) \in \mathcal{M}(G_0, \hat{\mathfrak{g}}_1)$. Then

$$-(8g-8) \leqslant \tau(E,\varphi) \leqslant 4g-4.$$

The bounds are attained except in type C, where we have

$$-(2g-2) \leqslant \tau(E,\varphi) \leqslant 2g-2.$$

Application to the quaternionic grading II

 Similarly, except for type C, the pair (G₀, g₁) is always JM-regular and (Z, V) is always a Vinberg pair (since dim V = 1). Thus:

Application to the quaternionic grading II

 Similarly, except for type C, the pair (G₀, g₁) is always JM-regular and (Z, V) is always a Vinberg pair (since dim V = 1). Thus:

Theorem (García-Prada–G., 2023)

Let $(E, \varphi) \in \mathcal{M}(G_0, \hat{\mathfrak{g}}_1)$ and assume that we are not in type C. Then

$$\mathcal{M}_{max}(G_0, \hat{\mathfrak{g}}_1) \simeq \mathcal{M}_{K^3_C}(Z, V).$$

• The example of the quiver grading of dimensions (1,1,1) from before is one of them.

Thank you!!

- Olivier Biquard, Brian Collier, Oscar García-Prada, and Domingo Toledo. Arakelov—Milnor inequalities and maximal variations of Hodge structure. *Compositio Mathematica*, 159(5):1005—1041, 2023.
 - Olivier Biquard, Oscar García-Prada, and Roberto Rubio.
 Higgs bundles, the Toledo invariant and the Cayley correspondence.
 Journal of Topology, 10(3):795–826, September 2017.

Oscar García-Prada and Miguel González. Cyclic Higgs bundles and the Toledo invariant. In preparation.

E.B. Vinberg.

The Weyl group of a graded Lie algebra. Mathematics of the USSR-Izvestiya, 10(3):463, jun 1976.