Cyclic Higgs bundles and the Toledo invariant

Miguel González (ICMAT) Joint work with Oscar García-Prada

Working Seminar ISTA

January 2024

Motivation

- *G* is a complex semisimple group, g its Lie algebra.
	- Study the subvarieties of **cyclic Higgs bundles** inside the moduli space *M*(*G*) of polystable *G*-Higgs bundles on smooth projective curve *C*.

Motivation

G is a complex semisimple group, g its Lie algebra.

- Study the subvarieties of **cyclic Higgs bundles** inside the moduli space *M*(*G*) of polystable *G*-Higgs bundles on smooth projective curve *C*.
- Recall that a *G*-Higgs bundle (E, φ) is a holomorphic principal *G*-bundle over *C* with a section $\varphi \in H^0(C, E(\mathfrak{g}) \otimes K_C)$.
- E.g *G* = SL*ⁿ* then *E* is a rank *n* vector bundle with $\det E = \mathcal{O}_C$ and $\varphi : E \to E \otimes K_C$ a traceless bundle morphism.

Motivation

G is a complex semisimple group, g its Lie algebra.

- Study the subvarieties of **cyclic Higgs bundles** inside the moduli space *M*(*G*) of polystable *G*-Higgs bundles on smooth projective curve *C*.
- Recall that a *G*-Higgs bundle (E, φ) is a holomorphic principal *G*-bundle over *C* with a section $\varphi \in H^0(C, E(\mathfrak{g}) \otimes K_C)$.
- E.g *G* = SL*ⁿ* then *E* is a rank *n* vector bundle with $\det E = \mathcal{O}_C$ and $\varphi : E \to E \otimes K_C$ a traceless bundle morphism.

Definition

Let *θ ∈* Aut*m*(*G*) be an order *m* automorphism, *ζ ∈* C *×* a primitive *m*-th root of unity. **Cyclic Higgs bundles** are the fixed points of the Z*/m*Z-action generated by

$$
(E,\varphi)\mapsto (\theta(E),\zeta^k d\theta(\varphi)).
$$

Vinberg *θ*-pairs

θ induces a Z*/m*Z-grading

$$
\mathfrak{g}=\bigoplus_{j\in\mathbb{Z}/m\mathbb{Z}}\hat{\mathfrak{g}}_j,\quad [\hat{\mathfrak{g}}_i,\hat{\mathfrak{g}}_j]\subseteq \hat{\mathfrak{g}}_{i+j}
$$

The adjoint representation restricts to a representation of any G closed subgroup H with $\mathit{G_{0}} \subseteq H \subseteq \mathit{G_{\theta}} = \mathit{N_{G}}(G^{\theta})$, e.g. $H = G^{\theta}$, on \hat{g}_k .

Vinberg *θ*-pairs

θ induces a $\mathbb{Z}/m\mathbb{Z}$ -grading

$$
\mathfrak{g}=\bigoplus_{j\in\mathbb{Z}/m\mathbb{Z}}\hat{\mathfrak{g}}_j,\quad [\hat{\mathfrak{g}}_i,\hat{\mathfrak{g}}_j]\subseteq \hat{\mathfrak{g}}_{i+j}
$$

- The adjoint representation restricts to a representation of any G closed subgroup H with $\mathit{G_{0}} \subseteq H \subseteq \mathit{G_{\theta}} = \mathit{N_{G}}(G^{\theta})$, e.g. $H = G^{\theta}$, on \hat{g}_k .
- (H, \hat{g}_k) is called **Vinberg** θ -pair.
- (E,φ) with E an H -bundle and $\varphi \in H^0(E(\hat{\mathfrak{g}}_k) \otimes K_{\mathcal{C}})$ is called (H, \hat{g}_k) -Higgs pair. Moduli spaces $\mathcal{M}(H, \hat{g}_k)$.

Vinberg *θ*-pairs

θ induces a $\mathbb{Z}/m\mathbb{Z}$ -grading

$$
\mathfrak{g} = \bigoplus_{j \in \mathbb{Z}/m\mathbb{Z}} \hat{\mathfrak{g}}_j, \quad [\hat{\mathfrak{g}}_i, \hat{\mathfrak{g}}_j] \subseteq \hat{\mathfrak{g}}_{i+j}
$$

- The adjoint representation restricts to a representation of any G closed subgroup H with $\mathit{G_{0}} \subseteq H \subseteq \mathit{G_{\theta}} = \mathit{N_{G}}(G^{\theta})$, e.g. $H = G^{\theta}$, on \hat{g}_k .
- (H, \hat{g}_k) is called **Vinberg** θ -pair.
- (E,φ) with E an H -bundle and $\varphi \in H^0(E(\hat{\mathfrak{g}}_k) \otimes K_{\mathcal{C}})$ is called (H, \hat{g}_k) -Higgs pair. Moduli spaces $\mathcal{M}(H, \hat{g}_k)$.

Theorem (García-Prada–Ramanan, 2019)

The image of $\mathcal{M}(G^{\theta}, \hat{\mathfrak{g}}_k) \to \mathcal{M}(G)$ consists of cyclic Higgs bundles. *All stable and simple cyclic Higgs bundles for θ and k are obtained by using the θ ′ , up to equivalence, on the same outer class as θ.*

 2990

- \bullet We will focus on the study of $\mathcal{M}(G_0, \hat{\mathfrak{g}}_1)$.
- *G*₀ because it is easier to work with. If *G* is s.c. then $G_0 = G^{\theta}$.
- $\hat{\mathfrak{g}}_1$ because if we had $\hat{\mathfrak{g}}_k$ for any other $k\neq 0$ we can pass to a subalgebra, and for $k = 0$ it is just $\mathcal{M}(G_0)$.

- \bullet We will focus on the study of $\mathcal{M}(G_0, \hat{g}_1)$.
- *G*₀ because it is easier to work with. If *G* is s.c. then $G_0 = G^{\theta}$.
- $\hat{\mathfrak{g}}_1$ because if we had $\hat{\mathfrak{g}}_k$ for any other $k \neq 0$ we can pass to a subalgebra, and for $k = 0$ it is just $\mathcal{M}(G_0)$.

Some more reasons why $\mathcal{M}(G_0, \hat{g}_1)$ is important:

For *m* = 2 we can find an antiholomorphic involution *τ* for the $\mathsf{compact}$ form, with $\tau \theta = \theta \tau =: \sigma.$ Let $\mathsf{G}^\mathbb{R} := \mathsf{G}^\sigma$ be the real form. Then $\mathcal{M}(\mathit{G}_{0}, \hat{\mathfrak{g}}_{1}) = \mathcal{M}(\mathit{G}^{\mathbb{R}})$, $\mathit{G}^{\mathbb{R}}$ -Higgs bundles.

- \bullet We will focus on the study of $\mathcal{M}(G_0, \hat{g}_1)$.
- *G*₀ because it is easier to work with. If *G* is s.c. then $G_0 = G^{\theta}$.
- $\hat{\mathfrak{g}}_1$ because if we had $\hat{\mathfrak{g}}_k$ for any other $k \neq 0$ we can pass to a subalgebra, and for $k = 0$ it is just $\mathcal{M}(G_0)$.

Some more reasons why $\mathcal{M}(G_0, \hat{g}_1)$ is important:

- For *m* = 2 we can find an antiholomorphic involution *τ* for the $\mathsf{compact}$ form, with $\tau \theta = \theta \tau =: \sigma.$ Let $\mathsf{G}^\mathbb{R} := \mathsf{G}^\sigma$ be the real form. Then $\mathcal{M}(\mathit{G}_{0}, \hat{\mathfrak{g}}_{1}) = \mathcal{M}(\mathit{G}^{\mathbb{R}})$, $\mathit{G}^{\mathbb{R}}$ -Higgs bundles.
- The invariant polynomial algebra $\mathbb{C}[\hat{\mathfrak{g}}_1]^{G_0}$ is a finitely generated polynomial algebra (Vinberg, 1976). Thus there is a Hitchin map (very few representations have this).

- \bullet We will focus on the study of $\mathcal{M}(G_0, \hat{g}_1)$.
- *G*₀ because it is easier to work with. If *G* is s.c. then $G_0 = G^{\theta}$.
- $\hat{\mathfrak{g}}_1$ because if we had $\hat{\mathfrak{g}}_k$ for any other $k \neq 0$ we can pass to a subalgebra, and for $k = 0$ it is just $\mathcal{M}(G_0)$.

Some more reasons why $\mathcal{M}(G_0, \hat{g}_1)$ is important:

- For *m* = 2 we can find an antiholomorphic involution *τ* for the $\mathsf{compact}$ form, with $\tau \theta = \theta \tau =: \sigma.$ Let $\mathsf{G}^\mathbb{R} := \mathsf{G}^\sigma$ be the real form. Then $\mathcal{M}(\mathit{G}_{0}, \hat{\mathfrak{g}}_{1}) = \mathcal{M}(\mathit{G}^{\mathbb{R}})$, $\mathit{G}^{\mathbb{R}}$ -Higgs bundles.
- The invariant polynomial algebra $\mathbb{C}[\hat{\mathfrak{g}}_1]^{G_0}$ is a finitely generated polynomial algebra (Vinberg, 1976). Thus there is a Hitchin map (very few representations have this).
- For even $m = 2m'$ they live inside the Lagrangians fixed by $(\theta^{m'}(E), -d\theta^{m'}(\varphi)).$

D

- \bullet We will focus on the study of $\mathcal{M}(G_0, \hat{g}_1)$.
- *G*₀ because it is easier to work with. If *G* is s.c. then $G_0 = G^{\theta}$.
- $\hat{\mathfrak{g}}_1$ because if we had $\hat{\mathfrak{g}}_k$ for any other $k \neq 0$ we can pass to a subalgebra, and for $k = 0$ it is just $\mathcal{M}(G_0)$.

Some more reasons why $\mathcal{M}(G_0, \hat{g}_1)$ is important:

- For *m* = 2 we can find an antiholomorphic involution *τ* for the $\mathsf{compact}$ form, with $\tau \theta = \theta \tau =: \sigma.$ Let $\mathsf{G}^\mathbb{R} := \mathsf{G}^\sigma$ be the real form. Then $\mathcal{M}(\mathit{G}_{0}, \hat{\mathfrak{g}}_{1}) = \mathcal{M}(\mathit{G}^{\mathbb{R}})$, $\mathit{G}^{\mathbb{R}}$ -Higgs bundles.
- The invariant polynomial algebra $\mathbb{C}[\hat{\mathfrak{g}}_1]^{G_0}$ is a finitely generated polynomial algebra (Vinberg, 1976). Thus there is a Hitchin map (very few representations have this).
- For even $m = 2m'$ they live inside the Lagrangians fixed by $(\theta^{m'}(E), -d\theta^{m'}(\varphi)).$
- Related to different constructions such as certain local systems (Simpson, 2006), solutions to the *affine Toda equations* (Baraglia, 2015), *cyclic surfaces* (Labourie, 2017)...

Vinberg C *[×]*-pairs

We will **make use of the theory of** Z**-gradings** of the Lie algebra g.

$$
\mathfrak{g}=\bigoplus_{j\in\mathbb{Z}}\mathfrak{g}_j,\quad [\mathfrak{g}_i,\mathfrak{g}_j]\subseteq \mathfrak{g}_{i+j}.
$$

- Similarly we have representations (*G*0*,* g*k*) called Vinberg \mathbb{C}^{\times} -pairs. We will use $(\mathcal{G}_{0}, \mathfrak{g}_{1}).$
- The corresponding Higgs bundles inside *M*(*G*) are the **Hodge bundles**, i.e. fixed points of the C *×*-action (Simpson, 1992).

Relating the gradings

- \bullet How do we get $\mathbb Z$ -gradings to appear in our setting?
- \bullet From a \mathbb{Z} -grading we can project the indices to $\mathbb{Z}/m\mathbb{Z}$ and get a Z*/m*Z-grading. (i.e. from C *[×] →* Aut(g) we precompose with $\mu_m \to \mathbb{C}^\times$).

$$
\hat{\mathfrak{g}}_k := \bigoplus_{j \equiv k \bmod m} \mathfrak{g}_j.
$$

Relating the gradings

- \bullet How do we get $\mathbb Z$ -gradings to appear in our setting?
- From a Z-grading we can project the indices to Z*/m*Z and get a Z*/m*Z-grading. (i.e. from C *[×] →* Aut(g) we precompose with $\mu_m \to \mathbb{C}^\times$).

$$
\hat{\mathfrak{g}}_k := \bigoplus_{j \equiv k \bmod m} \mathfrak{g}_j.
$$

 \bullet We want $\hat{\mathfrak{g}}_0 = \mathfrak{g}_0$ (in order to have the same structure group *G*0) so we will look at gradings

$$
\mathfrak{g}=\mathfrak{g}_{1-m}\oplus\cdots\oplus\mathfrak{g}_{m-1}.
$$

• Then $\hat{g}_j = g_j \oplus g_{j-m}$ for $j \neq 0$.

Examples

- **Real forms of Hermitian type.** Let $G^{\mathbb{R}} \subseteq G$ be a real form of Hermitian type. $H^{\mathbb{R}} \subseteq G^{\mathbb{R}}$ its maximal compact subgroup.
- This means that $\textit{G}^{\mathbb{R}}/\textit{H}^{\mathbb{R}}$ is a Hermitian symmetric space so we get a decomposition of the complexified tangent space at the identity, gˆ¹ = g¹ *⊕* g*−*¹ in the *±i*-eigenspaces of the complex structure.

Examples

- **Real forms of Hermitian type.** Let $G^{\mathbb{R}} \subseteq G$ be a real form of Hermitian type. $H^{\mathbb{R}} \subseteq G^{\mathbb{R}}$ its maximal compact subgroup.
- This means that $\textit{G}^{\mathbb{R}}/\textit{H}^{\mathbb{R}}$ is a Hermitian symmetric space so we get a decomposition of the complexified tangent space at the identity, $\hat{\mathfrak{g}}_1 = \mathfrak{g}_1 \oplus \mathfrak{g}_{-1}$ in the $\pm i$ -eigenspaces of the complex structure.
- This results in g = g*−*¹ *⊕* g⁰ *⊕* g¹ inducing the Z*/*2Z-grading, as desired.
- They are: *SU*(*p, q*), *SO*(2*, n*), *Sp*(2*n,* R), *SO[∗]* (2*n*), *E*6(*−*14) and *E*₇(−25).

Examples II

- **Quaternion-Kähler symmetric spaces.** Let *G* ^R *⊆ G* be a real form of *quaternionic* type. *H* ^R *⊆ G* ^R its maximal compact subgroup.
- By this we mean that $G^{\mathbb{R}}/H^{\mathbb{R}}$ is a quaternion-Kähler symmetric space, i.e. its holonomy is contained in Sp(*n*) Sp(1) *⊆* SO(4*n*).

Examples II

- **Quaternion-Kähler symmetric spaces.** Let *G* ^R *⊆ G* be a real form of *quaternionic* type. *H* ^R *⊆ G* ^R its maximal compact subgroup.
- By this we mean that $G^{\mathbb{R}}/H^{\mathbb{R}}$ is a quaternion-Kähler symmetric space, i.e. its holonomy is contained in Sp(*n*) Sp(1) *⊆* SO(4*n*).
- In this case we get decompositions of the symmetric pair gˆ⁰ = g*−*² *⊕* g⁰ *⊕* g² and gˆ¹ = g¹ *⊕* g*−*¹ given by ad(*I*) where $I \in \hat{g}_0$ is one of the almost complex structures.
- \bullet We can then consider the associated cyclic grading for $m = 3$. Note that for this grading $\mathcal{M}(G_0,\hat{\mathfrak{g}}_1)$ is $\boldsymbol{\mathsf{not}}\;\mathcal{M}(G^\mathbb{R}).$

Examples III

- The quaternionic Z-grading from before exists in every type.
- Alternate construction: fix a Cartan subalgebra t *⊆* g and simple roots $\Pi \subseteq \Delta(\mathfrak{g}, \mathfrak{t}) =: \Delta$. Consider the highest root $$
- Normalise the dual Killing form so that $B^*(\beta, \beta) = 2$. Then *for any other root we have* $B^*(\alpha, \beta) \in \{-2, -1, 0, 1, 2\}.$

Examples III

- The quaternionic Z-grading from before exists in every type.
- Alternate construction: fix a Cartan subalgebra t *⊆* g and simple roots $\Pi \subseteq \Delta(\mathfrak{g}, \mathfrak{t}) =: \Delta$. Consider the highest root $β ∈ Δ$.
- Normalise the dual Killing form so that $B^*(\beta, \beta) = 2$. Then *for any other root we have* $B^*(\alpha, \beta) \in \{-2, -1, 0, 1, 2\}.$
- \bullet This induces the quaternionic $\mathbb Z$ -grading by assigning degree $B^*(\alpha,\beta)$ to \mathfrak{g}_{α} .
- The corresponding real forms are *SU*(2*, n*), *SO*(4*, n*), $Sp(2, 2n), E_6(2), E_7(-5), E_8(-24), F_4(4)$ and $G_2(2)$.

Examples IV

- Take $G = SL_n$ and decompose its standard representation
- *V* = V_0 ⊕ \cdots ⊕ V_{m-1} in pieces of dimensions d_i , $\sum_i d_i = n$.

Examples IV

- Take *G* = SL*ⁿ* and decompose its standard representation *V* = V_0 ⊕ \cdots ⊕ V_{m-1} in pieces of dimensions d_i , $\sum_i d_i = n$.
- We get a \mathbb{Z} -grading on $\mathfrak{g} = \mathfrak{sl}_n = \mathsf{End}_0(V)$ by

$$
\mathfrak{g}_k = \mathfrak{sl}_n \cap \bigoplus_j \mathsf{End}(V_j, V_{j+k}).
$$

 $G_0 = S(GL_{d_0} \times \cdots \times GL_{d_{m-1}})$, and \mathfrak{g}_1 endomorphisms of the form:

$$
V_0 \xrightarrow{f_0} V_1 \xrightarrow{f_1} \dots \xrightarrow{f_{m-2}} V_{m-1} .
$$

Examples IV

- Take *G* = SL*ⁿ* and decompose its standard representation *V* = V_0 ⊕ \cdots ⊕ V_{m-1} in pieces of dimensions d_i , $\sum_i d_i = n$.
- We get a \mathbb{Z} -grading on $\mathfrak{g} = \mathfrak{sl}_n = \mathsf{End}_0(V)$ by

$$
\mathfrak{g}_k = \mathfrak{sl}_n \cap \bigoplus_j \mathsf{End}(V_j, V_{j+k}).
$$

 $G_0 = S(GL_{d_0} \times \cdots \times GL_{d_{m-1}})$, and \mathfrak{g}_1 endomorphisms of the form:

$$
V_0 \xrightarrow{f_0} V_1 \xrightarrow{f_1} \dots \xrightarrow{f_{m-2}} V_{m-1} .
$$

A^m **quiver (or** *linear* **quiver) representations**.

• For $m = 2$, the Hermitian form $SU(d_0, d_1)$. For $m = 3$ and dimensions (1*, n,* 1) it gives the quaternionic grading in type *A*.

Examples V

• The associated $\mathbb{Z}/m\mathbb{Z}$ -grading is:

$$
\hat{\mathfrak{g}}_k = \mathfrak{sl}_n \cap \bigoplus_{j \in \mathbb{Z}/m\mathbb{Z}} \text{End}(V_j, V_{j+k}).
$$

 $G_0 = S(GL_{d_0} \times \cdots \times GL_{d_{m-1}})$, and \mathfrak{g}_1 endomorphisms of the form:

$$
V_0 \xrightarrow{f_0} V_1 \xrightarrow{f_1} \cdots \xrightarrow{f_{m-2}} V_{m-1} .
$$

Cyclic quiver representations.

Classification of $\mathbb Z$ -gradings

For $\mathfrak g$ semisimple, given a $\mathbb Z$ -grading $\mathfrak g = \bigoplus_k \mathfrak g_k$ there is *D* ∈ g_0 the grading element. Grading given by eigenspaces of ad(*D*).

Classification of $\mathbb Z$ -gradings

- For $\mathfrak g$ semisimple, given a $\mathbb Z$ -grading $\mathfrak g = \bigoplus_k \mathfrak g_k$ there is *D* ∈ g_0 the grading element. Grading given by eigenspaces of ad(*D*).
- We can choose Cartan t *⊆* g with *D ∈* t and simple roots $\Pi = {\alpha_i}$ with the integers $\alpha_i(D) \geq 0$.

Classification of Z-gradings

- For $\mathfrak g$ semisimple, given a $\mathbb Z$ -grading $\mathfrak g = \bigoplus_k \mathfrak g_k$ there is *D* ∈ g_0 the grading element. Grading given by eigenspaces of ad(*D*).
- We can choose Cartan t *⊆* g with *D ∈* t and simple roots $\Pi = {\alpha_i}$ with the integers $\alpha_i(D) \geq 0$.
- Then we get a labelling of the Dynkin diagram. Conversely such a labelling $\{p_i\}$ induces a grading with $\mathfrak{g}_{\alpha_i}\subseteq\mathfrak{g}_{p_i}.$

Classification of Z-gradings

- For $\mathfrak g$ semisimple, given a $\mathbb Z$ -grading $\mathfrak g = \bigoplus_k \mathfrak g_k$ there is *D* ∈ g_0 the **grading element**. Grading given by eigenspaces of ad(*D*).
- We can choose Cartan t *⊆* g with *D ∈* t and simple roots $\Pi = {\alpha_i}$ with the integers $\alpha_i(D) \geq 0$.
- Then we get a labelling of the Dynkin diagram. Conversely such a labelling $\{p_i\}$ induces a grading with $\mathfrak{g}_{\alpha_i}\subseteq\mathfrak{g}_{p_i}.$
- Example: linear quiver grading for dimensions (2*,* 1*,* 1). If the simple roots are $\alpha_i = e_{i+1} - e_i$ then we have root vectors $E_{\alpha_i} = E_{i+1,i}$ so the labelling is

 \bullet_0 \longrightarrow \bullet_1 \longrightarrow \bullet_1

(In general we will have a 1 each *dⁱ* dots).

Classification of Z*/m*Z-gradings

- There is also a classification $\mathbb{Z}/m\mathbb{Z}$ -gradings by V. Kac.
- **•** First for inner $\theta \in \text{Int}_{m}$ g. Let $\alpha_0 := -\beta$ be the lowest root and consider the Dynkin diagram for $\{\alpha_0, \alpha_1, \dots, \alpha_r\}$, i.e. the **affine Dynkin diagram**.

Classification of Z*/m*Z-gradings

- There is also a classification $\mathbb{Z}/m\mathbb{Z}$ -gradings by V. Kac.
- **•** First for inner $\theta \in \ln \mathsf{t}_m$ g. Let $\alpha_0 := -\beta$ be the lowest root and consider the Dynkin diagram for $\{\alpha_0, \alpha_1, \dots, \alpha_r\}$, i.e. the **affine Dynkin diagram**.

Classification of Z*/m*Z-gradings II

A labelling *{pi}* of the affine Dynkin diagram corresponds to a $\mathbb{Z}/m\mathbb{Z}$ -grading where $m=\sum_{i}n_{i}p_{i}$ and the n_{i} are the smallest such that $0 = \sum_{i} n_i \alpha_i$.

Classification of Z*/m*Z-gradings II

- A labelling *{pi}* of the affine Dynkin diagram corresponds to a $\mathbb{Z}/m\mathbb{Z}$ -grading where $m=\sum_{i}n_{i}p_{i}$ and the n_{i} are the smallest such that $0 = \sum_{i} n_i \alpha_i$.
- For example the cyclic quiver $\mathbb{Z}/3\mathbb{Z}$ -grading $(2,1,1)$ from before is:

since the lowest root vector is $E_{1,4}$. In general we will have a 1 each *dⁱ* dots.

• The quaternionic grading is inner, obtained by labelling α_0 and its adjacents with a 1.

Classification of Z*/m*Z-gradings II

- A labelling *{pi}* of the affine Dynkin diagram corresponds to a $\mathbb{Z}/m\mathbb{Z}$ -grading where $m=\sum_{i}n_{i}p_{i}$ and the n_{i} are the smallest such that $0 = \sum_{i} n_i \alpha_i$.
- For example the cyclic quiver $\mathbb{Z}/3\mathbb{Z}$ -grading $(2,1,1)$ from before is:

since the lowest root vector is $E_{1,4}$. In general we will have a 1 each *dⁱ* dots.

- The quaternionic grading is inner, obtained by labelling α_0 and its adjacents with a 1.
- In both cases we can now clearly see that it comes from a Z-grading given by looking at the regular Dynkin diagram inside of the affine one. K ロ K K 레 K K 화 K X 화 X 화 X X X 전

Miguel González **Cyclic Higgs bundles and the Toledo invariant** 14 / 33

Classification of Z*/m*Z-gradings III

We have just observed:

Proposition

Every inner $\mathbb{Z}/m\mathbb{Z}$ -grading comes from a \mathbb{Z} -grading.

Classification of Z*/m*Z-gradings III

We have just observed:

Proposition

Every inner $\mathbb{Z}/m\mathbb{Z}$ -grading comes from a \mathbb{Z} -grading.

However, recall that we want g = g1*−^m ⊕ · · · ⊕* g*m−*¹ so that $\hat{\mathfrak g}_0=\mathfrak g_0.$

Proposition

The Z-grading obtained before is of the desired form if and only if $p_0 > 0$.
Classification of Z*/m*Z-gradings III

We have just observed:

Proposition

Every inner $\mathbb{Z}/m\mathbb{Z}$ -grading comes from a \mathbb{Z} -grading.

However, recall that we want g = g1*−^m ⊕ · · · ⊕* g*m−*¹ so that $\hat{\mathfrak g}_0=\mathfrak g_0.$

Proposition

The Z-grading obtained before is of the desired form if and only if $p_0 > 0$.

In particular, if the lowest root can be carried to a simple root with *pⁱ >* 0 via an automorphism of the affine Dynkin diagram (*⇐⇒* we have $n_i = 1$ and $p_i > 0$ for some *i*), we can always find such a grading. E.g. we can always do it in type *A*.

Classification of Z*/m*Z-gradings IV

- What about gradings that are not inner?
- They are classified by labellings of **Kac diagrams**, which are obtained by taking a Dynkin automorphism *s* in the outer class and considering the action of the disconnected torus $\mathcal{S} = \mathcal{T} \times \mathbb{Z} / q \mathbb{Z}$ where $\mathcal{T} \subseteq \mathcal{C}_{\mathsf{Aut}(\mathfrak{g})}(s)$ is a maximal torus and $\mathbb{Z}/q\mathbb{Z}$ acts via *s* (so $q = \text{ord}(s)$). An affine Dynkin diagram is constructed for this action to give the Kac diagram.

Classification of Z*/m*Z-gradings IV

- What about gradings that are not inner?
- They are classified by labellings of **Kac diagrams**, which are obtained by taking a Dynkin automorphism *s* in the outer class and considering the action of the disconnected torus $\mathcal{S} = \mathcal{T} \times \mathbb{Z} / q \mathbb{Z}$ where $\mathcal{T} \subseteq \mathcal{C}_{\mathsf{Aut}(\mathfrak{g})}(s)$ is a maximal torus and $\mathbb{Z}/q\mathbb{Z}$ acts via *s* (so $q = \text{ord}(s)$). An affine Dynkin diagram is constructed for this action to give the Kac diagram.
- \bullet These never come from \mathbb{Z} -gradings because the map $\mathbb C^\times \to \operatorname{\mathsf{Aut}}(\mathfrak g)$ giving a $\mathbb Z$ -grading goes into $\operatorname{\mathsf{Int}}(\mathfrak g).$

The Toledo character

• Recall the setup: *G* complex semisimple, $\theta \in \text{Aut}_m(G)$ inducing a Z*/m*Z-grading on the Lie algebra g coming from a Z-grading g = g1*−^m ⊕ · · · ⊕* g*m−*¹ with grading element *D*. Let *B* be the Killing form or any Ad-invariant non-degenerate bilinear form.

The Toledo character

• Recall the setup: *G* complex semisimple, $\theta \in \text{Aut}_m(G)$ inducing a Z*/m*Z-grading on the Lie algebra g coming from a Z-grading g = g1*−^m ⊕ · · · ⊕* g*m−*¹ with grading element *D*. Let *B* be the Killing form or any Ad-invariant non-degenerate bilinear form.

Definition

The **Toledo character** χ _{*T*} : $\mathfrak{g}_0 \to \mathbb{C}$ is defined by $x \mapsto \lambda_B \cdot B(D, x)$.

The Toledo character

• Recall the setup: *G* complex semisimple, $\theta \in \text{Aut}_m(G)$ inducing a Z*/m*Z-grading on the Lie algebra g coming from a Z-grading g = g1*−^m ⊕ · · · ⊕* g*m−*¹ with grading element *D*. Let *B* be the Killing form or any Ad-invariant non-degenerate bilinear form.

Definition

The **Toledo character** χ _{*T*} : $\mathfrak{g}_0 \to \mathbb{C}$ is defined by $x \mapsto \lambda_B \cdot B(D, x)$.

Here $\lambda_B \in \mathbb{C}^\times$ is a constant that makes it independent of the choice of *B*. If we want this to generalise the Toledo character for Hermitian real forms (Biquard–García-Prada–Rubio, 2017) we can choose $\lambda_{\boldsymbol{B}} := B^*(\gamma,\gamma)$ where γ is the longest root labelled with a 1 in the Z -grading.

The Toledo rank

The first thing we can define with *χ^T* is a rank associated with every *G*₀-orbit in g_1 .

The Toledo rank

The first thing we can define with *χ^T* is a rank associated with every *G*₀-orbit in g_1 .

Definition

Let $e \in \mathfrak{g}_1$. The **Toledo rank** of *e* is defined as:

$$
\mathsf{rk}_{\mathcal{T}}(e) := \frac{\chi_{\mathcal{T}}(h)}{2},
$$

where (h, e, f) is an \mathfrak{sl}_2 -triple with $h \in \mathfrak{g}_0$ and $f \in \mathfrak{g}_{-1}$.

The Toledo rank

The first thing we can define with *χ^T* is a rank associated with every G₀-orbit in g_1 .

Definition

Let $e \in \mathfrak{g}_1$. The **Toledo rank** of e is defined as:

$$
\mathsf{rk}_{\mathcal{T}}(e) := \frac{\chi_{\mathcal{T}}(h)}{2},
$$

where (h, e, f) is an \mathfrak{sl}_2 -triple with $h \in \mathfrak{g}_0$ and $f \in \mathfrak{g}_{-1}$.

- It is well defined and constant on G₀ orbits.
- There are finitely many orbits so it is bounded. The maximum is denoted by $rk_{\mathcal{T}}(G_0, \mathfrak{g}_1)$ and is attained precisely at the unique open orbit $\Omega \subseteq \mathfrak{g}_1$. The minimum is 0.

The Toledo rank II

For example, in the linear quivers Z-grading, an element *e* ∈ \mathfrak{g}_1 is defined by maps f_i : V_i → V_{i+1} . The Toledo rank is a linear combinantion of the ranks of $f_{r,s} := f_s \circ \cdots \circ f_{r+1} \circ f_r$. If $m = 2$ it is just rk *f* where $f: V_0 \to V_1$.

The Toledo rank II

- For example, in the linear quivers Z-grading, an element *e* ∈ \mathfrak{g}_1 is defined by maps f_i : V_i → V_{i+1} . The Toledo rank is a linear combinantion of the ranks of $f_{r,s} := f_s \circ \cdots \circ f_{r+1} \circ f_r$. If $m = 2$ it is just rk *f* where $f: V_0 \to V_1$.
- Since it only depends on the G₀ orbit, we can define the Toledo rank of a Higgs field $\varphi \in H^0(E(\mathfrak{g}_1) \otimes K_C)$ appearing in a (*G*0*,* g1)-Higgs bundle by:

$$
\mathsf{rk}_{\mathcal{T}}(\varphi) := \mathsf{rk}_{\mathcal{T}}(\varphi(c)),
$$

for generic $c \in \mathcal{C}$.

The Toledo rank II

- \bullet For example, in the linear quivers $\mathbb Z$ -grading, an element *e* ∈ \mathfrak{g}_1 is defined by maps f_i : V_i → V_{i+1} . The Toledo rank is a linear combinantion of the ranks of $f_{r,s} := f_s \circ \cdots \circ f_{r+1} \circ f_r$. If $m = 2$ it is just rk *f* where $f: V_0 \to V_1$.
- Since it only depends on the G₀ orbit, we can define the Toledo rank of a Higgs field $\varphi \in H^0(E(\mathfrak{g}_1) \otimes K_C)$ appearing in a (*G*0*,* g1)-Higgs bundle by:

$$
\mathsf{rk}_{\mathcal{T}}(\varphi) := \mathsf{rk}_{\mathcal{T}}(\varphi(c)),
$$

for generic $c \in C$.

 \bullet In our case of interest, $\mathcal{M}(G_0, \hat{g}_1)$, we can decompose the Higgs field $\varphi = \varphi^+ + \varphi^-$ according to the decomposition $\hat{\mathfrak g}_{1}=\mathfrak g_{1}\oplus\mathfrak g_{1-m}$ and compute rk ${}_{\mathcal T}\!(\varphi^+)$.

The Toledo invariant

Choose a positive integer $q \in \mathbb{Z}_{>0}$ so that $q\chi_{\mathcal{T}}$ lifts to $\tilde{\chi}_\mathcal{T}: G_0 \to \mathbb{C}^\times$.

Definition

Let (E, φ) be a (G_0, \hat{g}_1) -Higgs pair. Its **Toledo invariant** is defined as

$$
\tau(E,\varphi):=\frac{\deg(E\times_{\tilde\chi_T}\mathbb C^{\times})}{q}.
$$

The Toledo invariant

Choose a positive integer *q ∈* Z*>*⁰ so that *qχ^T* lifts to $\tilde{\chi}_\mathcal{T}: G_0 \to \mathbb{C}^\times$.

Definition

Let (E, φ) be a (G_0, \hat{g}_1) -Higgs pair. Its **Toledo invariant** is defined as

$$
\tau(E,\varphi):=\frac{\deg(E\times_{\tilde\chi_T}\mathbb C^\times)}{q}.
$$

- It was introduced and studied in the spaces $\mathcal{M}(G_0, \mathfrak{g}_1)$ in (Biquard–Collier–García-Prada–Toledo, 2023).
- Generalises the Toledo invariant for Higgs bundles for Hermitian real forms studied both from the representation and Higgs bundle points of view in (Turaev, 1984), (Domic–Toledo, 1987), (Bradlow–García-Prada–Gothen, 2001 & 2003), (Burger–Iozzi–Wienhard 2003 & 2010), (Biquard–García-Prada–Rubio, 2017). □▶ (日) (ミ) (ミ) (ミ) 등 (이익어

The Toledo invariant, example

Consider the grading for cyclic quiver representations with dimensions d_i . In this case a $\mathcal{M}(\mathcal{G}_0, \hat{\mathfrak{g}}_1)$ -Higgs bundle can be seen as a rank *n* vector bundle $E := E_0 \oplus \cdots \oplus E_{m-1}$ with rank $E_i = d_i$ and det $E = \mathcal{O}_C$, and a bundle morphism φ : *E* → *E* ⊗ *K*_{*C*} such that φ (*E*_{*j*}) \subseteq *E*_{*j*+1} ⊗ *K*_{*C*} (with cyclic indices).

The Toledo invariant, example

- Consider the grading for cyclic quiver representations with dimensions d_i . In this case a $\mathcal{M}(\mathcal{G}_0, \hat{\mathfrak{g}}_1)$ -Higgs bundle can be seen as a rank *n* vector bundle $E := E_0 \oplus \cdots \oplus E_{m-1}$ with rank $E_i = d_i$ and det $E = \mathcal{O}_C$, and a bundle morphism φ : *E* → *E* ⊗ *K*_{*C*} such that φ (*E*_{*j*}) \subseteq *E*_{*j*+1} ⊗ *K*_{*C*} (with cyclic indices).
- In this case

$$
\tau(E,\varphi)=2\sum_{j=0}^{m-1}(j-\alpha)\deg E_j,
$$

where $\alpha = \frac{\sum_j d_j}{d_j}$ *dj .*

The Toledo invariant, example

- Consider the grading for cyclic quiver representations with dimensions d_i . In this case a $\mathcal{M}(\mathcal{G}_0, \hat{\mathfrak{g}}_1)$ -Higgs bundle can be seen as a rank *n* vector bundle $E := E_0 \oplus \cdots \oplus E_{m-1}$ with rank $E_i = d_i$ and det $E = \mathcal{O}_C$, and a bundle morphism φ : *E* → *E* ⊗ *K*_{*C*} such that φ (*E*_{*j*}) ⊆ *E*_{*j*+1} ⊗ *K*_{*C*} (with cyclic indices).
- In this case

$$
\tau(E,\varphi)=2\sum_{j=0}^{m-1}(j-\alpha)\deg E_j,
$$

where $\alpha = \frac{\sum_j d_j}{d_j}$ *dj .*

For $m=2$ one gets $\tau=2\frac{d_0\deg E_1-d_1\deg E_0}{d_0+d_1}$. Using that $\deg E_0 = -$ deg E_1 it becomes $\tau = 2$ deg E_1 , the Toledo invariant for $SU(d_0, d_1)$ -Higgs bundles.

DO \leftarrow \oplus \rightarrow 医电子 化重子 \equiv 990 Miguel González Cyclic Higgs bundles and the Toledo invariant 21 / 33

Milnor-type inequality

Theorem (García-Prada–G., 2023)

Let (E, φ) *be a* (λD) -semistable (G_0, \hat{g}_1) -Higgs pair, $\lambda \in \mathbb{R}$. Then

$$
\tau(E,\varphi) \geqslant -\operatorname{rk}_{\mathcal{T}}(\varphi^{+})(2g-2)+\lambda(B^{*}(\gamma,\gamma)B(D,D)-\operatorname{rk}_{\mathcal{T}}(\varphi^{+})).
$$

- \bullet In particular, if $(E, \varphi) \in \mathcal{M}(G_0, \hat{g}_1)$, then $\tau(E, \varphi) \geqslant -(2g-2)\operatorname{\mathsf{rk}}_{\mathcal{T}}(\varphi^+) \geqslant -(2g-2)\operatorname{\mathsf{rk}}_{\mathcal{T}}(G_0, \mathfrak{g}_1).$
- This contains previous Milnor-type inequalities (Hermitian real forms, (*G*0*,* g1)-Higgs pairs) and extends to the more general situation that we are considering.

Milnor-type inequality

Theorem (García-Prada–G., 2023)

Let
$$
(E, \varphi)
$$
 be a (λD) -semistable (G_0, \hat{g}_1) -Higgs pair, $\lambda \in \mathbb{R}$. Then

$$
\tau(E,\varphi) \geqslant -\operatorname{rk}_{\mathcal{T}}(\varphi^{+})(2g-2)+\lambda(B^*(\gamma,\gamma)B(D,D)-\operatorname{rk}_{\mathcal{T}}(\varphi^{+})).
$$

- \bullet In particular, if $(E, \varphi) \in \mathcal{M}(G_0, \hat{g}_1)$, then $\tau(E, \varphi) \geqslant -(2g-2)\operatorname{\mathsf{rk}}_{\mathcal{T}}(\varphi^+) \geqslant -(2g-2)\operatorname{\mathsf{rk}}_{\mathcal{T}}(G_0, \mathfrak{g}_1).$
- This contains previous Milnor-type inequalities (Hermitian real forms, (*G*0*,* g1)-Higgs pairs) and extends to the more general situation that we are considering.
- Proof uses the existence of a relative invariant for the Toledo character, i.e. a rational map $F: \mathfrak{g}_1 \rightarrow \mathbb{C}$ such that $F(g \cdot v) = \tilde{\chi} \tau(g) F(v).$
- For the quiver representations case one can prove it *by hand* but it is very tedious.

Extremal Toledo invariant

For which (G_0, \hat{g}_1) -Higgs pairs is the bound $\tau(\mathit{E},\varphi) = -(2g-2)\,\mathsf{rk}_{\mathcal{T}}(\mathit{G}_{0},\mathfrak{g}_{1})$ attained?

Extremal Toledo invariant

- For which (G_0, \hat{g}_1) -Higgs pairs is the bound $\tau(E, \varphi) = -(2g-2) \operatorname{rk}_{\tau}(G_0, \mathfrak{g}_1)$ attained?
- This locus inside $\mathcal{M}(G_0, \hat{\mathfrak{g}}_1)$ is denoted by $\mathcal{M}_{max}(G_0, \hat{\mathfrak{g}}_1)$.

Extremal Toledo invariant

- For which (G_0, \hat{g}_1) -Higgs pairs is the bound $\tau(E, \varphi) = -(2g-2) \operatorname{rk}_{\mathcal{I}}(G_0, \mathfrak{g}_1)$ attained?
- This locus inside $\mathcal{M}(G_0, \hat{\mathfrak{g}}_1)$ is denoted by $\mathcal{M}_{max}(G_0, \hat{\mathfrak{g}}_1)$.
- For $\mathcal{M}(G^\mathbb{R})$ where $G^\mathbb{R}$ is Hermitian of $\bf{tube\ type\ the\ answer}$ is given by the **Cayley correspondence**:

Theorem (Biquard–García-Prada–Rubio, 2017)

If $G^{\mathbb{R}}$ *is a Hermitian real form of tube type, there exists* $G^* \subseteq G^{\theta}$ *(the noncompact dual) such that if the order of* $exp(2\pi iD) \in G_0$ *divides* (2*g −* 2)*, then:*

$$
\mathcal{M}_{\textit{max}}(G^\mathbb{R}) \simeq \mathcal{M}_{\mathcal{K}_C^2}(G^*).
$$

COLE

→ 伊 → → ミ → → ミ → → ミ → つくぐ

Cayley correspondence for *U*(*n, n*)

- For example, consider $G^{\mathbb{R}} = U(n,n) \subseteq \mathsf{GL}_{2n}$, which is Hermitian of tube type.
- The Cayley partner is $G^* = GL_n$.
- The corresponding $\mathbb{Z}/2\mathbb{Z}$ -grading is the cyclic quiver one in *GL*_{2*n*} for dimensions (n, n) .

Cayley correspondence for $U(n, n)$

- For example, consider $G^{\mathbb{R}} = U(n,n) \subseteq \mathsf{GL}_{2n}$, which is Hermitian of tube type.
- The Cayley partner is $G^* = GL_n$.
- The corresponding $\mathbb{Z}/2\mathbb{Z}$ -grading is the cyclic quiver one in *GL*2*ⁿ* for dimensions (*n, n*).
- **•** A $U(n, n)$ -Higgs bundle $(E, \varphi) \in M(U(n, n))$ is a vector bundle $E = E_0 \oplus E_1$ with rank $E_i = n$ and a bundle map $\varphi: E \to E \otimes K_C$ with $\varphi(E_j) \subseteq E_{j+1} \otimes K_C$.
- Let $\varphi_j: E_j \to E_{j+1} \otimes \mathcal{K}_C$. Then the Toledo invariant is extremal if φ_0 is an isomorphism. Then $E_0 \simeq E_1 \otimes K_C$.

Cayley correspondence for *U*(*n, n*)

- For example, consider $G^{\mathbb{R}} = U(n,n) \subseteq \mathsf{GL}_{2n}$, which is Hermitian of tube type.
- The Cayley partner is $G^* = GL_n$.
- The corresponding $\mathbb{Z}/2\mathbb{Z}$ -grading is the cyclic quiver one in *GL*2*ⁿ* for dimensions (*n, n*).
- **•** A $U(n, n)$ -Higgs bundle $(E, \varphi) \in M(U(n, n))$ is a vector bundle $E = E_0 \oplus E_1$ with rank $E_i = n$ and a bundle map φ : *E* → *E* ⊗ *KC* with φ (*E_j*) ⊆ *E_{j+1}* ⊗ *K_C*.
- Let $\varphi_j: E_j \to E_{j+1} \otimes \mathcal{K}_C$. Then the Toledo invariant is extremal if φ_0 is an isomorphism. Then $E_0 \simeq E_1 \otimes K_C$.
- The Cayley correspondence is given by $(E, \varphi) \mapsto (E_1, \varphi_0 \varphi_1)$.

Studying $\mathcal{M}_{max}(G_0, \hat{g}_1)$

• From now on, we will restrict to **JM-regular** (G_0, \mathfrak{g}_1) . This condition generalises the tube type as well as the other conditions in the Cayley correspondence for Hermitian real forms.

Studying $\mathcal{M}_{max}(G_0, \hat{g}_1)$

- From now on, we will restrict to JM-regular (G_0, \mathfrak{g}_1) . This condition generalises the tube type as well as the other conditions in the Cayley correspondence for Hermitian real forms.
- For example, the quiver grading when the vector (d_i) is palindromic and unimodal.

Studying $\mathcal{M}_{max}(G_0, \hat{g}_1)$

- From now on, we will restrict to **JM-regular** (G_0, \mathfrak{g}_1) . This condition generalises the tube type as well as the other conditions in the Cayley correspondence for Hermitian real forms.
- For example, the quiver grading when the vector (d_i) is palindromic and unimodal.
- **•** Recall the unique open orbit $Ω ⊆ g₁$, characterised by $rk_{\mathcal{T}}(\Omega) = rk_{\mathcal{T}}(G_0, \mathfrak{g}_1).$
- $τ(E, φ)$ attains the bound if and only if $φ^+(c) ∈ Ω$ for all *c ∈ C*.
- Are there any such Higgs pairs?

Canonical uniformising Higgs pair

- Let $\mathcal{T} = \mathbb{C}^\times$ and denote by $E_\mathcal{T}$ the frame bundle of $\mathcal{K}^{\frac{-1}{2}}_\mathcal{C}$.
- **•** The canonical uniformising SL_2 -Higgs bundle is $(E_T(SL_2), e)$, where (h, e, f) spans sI_2 and we identify *T* = exp(*h*) \subseteq SL₂. Note that $E_T(\langle e \rangle) \otimes K_C \simeq \mathcal{O}_C$ so *e* is a Higgs field.

Canonical uniformising Higgs pair

- Let $\mathcal{T} = \mathbb{C}^\times$ and denote by $E_\mathcal{T}$ the frame bundle of $\mathcal{K}^{\frac{-1}{2}}_\mathcal{C}$.
- **•** The canonical uniformising SL_2 -Higgs bundle is $(E_T(SL_2), e)$, where (h, e, f) spans sI_2 and we identify *T* = exp(*h*) \subseteq SL₂. Note that $E_T(\langle e \rangle) \otimes K_C \simeq \mathcal{O}_C$ so *e* is a Higgs field.
- In terms of vector bundles, it is $\kappa_{\mathcal{C}}^{\frac{1}{2}}\oplus\kappa_{\mathcal{C}}^{\frac{-1}{2}}$ with the Higgs field $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$.
	-

Canonical uniformising Higgs pair

- Let $\mathcal{T} = \mathbb{C}^\times$ and denote by $E_\mathcal{T}$ the frame bundle of $\mathcal{K}^{\frac{-1}{2}}_\mathcal{C}$.
- **•** The canonical uniformising SL_2 -Higgs bundle is $(E_T(SL_2), e)$, where (h, e, f) spans sI_2 and we identify *T* = exp(*h*) ⊆ SL₂. Note that $E_T(\langle e \rangle) \otimes K_C \simeq \mathcal{O}_C$ so *e* is a Higgs field.
- In terms of vector bundles, it is $\kappa_{\mathcal{C}}^{\frac{1}{2}}\oplus\kappa_{\mathcal{C}}^{\frac{-1}{2}}$ with the Higgs field $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$.
- Now pick *e ∈* Ω *⊆* g1. By Jacobson–Morozov we can choose an \mathfrak{sl}_2 -triple (h, e, f) with $h \in \mathfrak{g}_0$ and $f \in \mathfrak{g}_{-1}$. This yields $SL_2 \hookrightarrow G$ (or $PSL_2 \hookrightarrow G$).
- The resulting bundle $(E_T(G_0), e)$ lives in $\mathcal{M}_{max}(G_0, \hat{g}_1)$ by construction.

Cayley partner

- Let $e \in \Omega \subseteq \mathfrak{g}_1$ and $Z := \mathcal{C}_{\mathcal{G}_0}(e)$.
- Let $V := \operatorname{Im}(\operatorname{ad}(e)^{m-1}|_{\mathfrak{g}_{1-m}} : \mathfrak{g}_{1-m} \to \mathfrak{g}_0)$. The map $\psi := \mathsf{ad}(e)^{m-1}|_{\mathfrak{g}_{1-m}}$ is an isomorphism onto *V*.

Cayley partner

- Let $e \in \Omega \subseteq \mathfrak{g}_1$ and $Z := \mathcal{C}_{\mathcal{G}_0}(e)$.
- Let $V := \operatorname{Im}(\operatorname{ad}(e)^{m-1}|_{\mathfrak{g}_{1-m}} : \mathfrak{g}_{1-m} \to \mathfrak{g}_0)$. The map $\psi := \mathsf{ad}(e)^{m-1}|_{\mathfrak{g}_{1-m}}$ is an isomorphism onto *V*.
- Equivalently, *V* is g⁰ *∩ W* where *W* are the (2*m −* 1)-dimensional irreducible representations of sl² in g given by (*h, e, f*).

Cayley partner

- Let $e \in \Omega \subseteq \mathfrak{g}_1$ and $Z := \mathcal{C}_{\mathcal{G}_0}(e)$.
- Let $V := \operatorname{Im}(\operatorname{ad}(e)^{m-1}|_{\mathfrak{g}_{1-m}} : \mathfrak{g}_{1-m} \to \mathfrak{g}_0)$. The map $\psi := \mathsf{ad}(e)^{m-1}|_{\mathfrak{g}_{1-m}}$ is an isomorphism onto *V*.
- Equivalently, *V* is g⁰ *∩ W* where *W* are the (2*m −* 1)-dimensional irreducible representations of sl² in g given by (*h, e, f*).
- The adjoint representation of *Z ⊆ G*⁰ on g⁰ has *V* as a subrepresentation.
- We will consider K_C^m -twisted (Z, V) -Higgs pairs $\mathcal{M}_{K_C^m}(Z, V)$.

Cayley map

We define the $\sf{Cayley \ map}$ by starting from a K_C^m -twisted (Z, V) -Higgs pair (E_Z, φ') and sending it to:

$$
E:=(E_T\otimes E_Z)(G_0)
$$

$$
\varphi:=e+\psi^{-1}(\varphi').
$$

(We use that T and Z are commuting subgroups of G_0).

Cayley map

We define the $\sf{Cayley \ map}$ by starting from a K_C^m -twisted (Z, V) -Higgs pair (E_Z, φ') and sending it to:

$$
E := (E_T \otimes E_Z)(G_0)
$$

$$
\varphi := e + \psi^{-1}(\varphi').
$$

(We use that T and Z are commuting subgroups of G_0).

- As a map from isomorphism classes of K_C^m -twisted (Z, V) -Higgs pairs to (G_0, \hat{g}_1) -Higgs pairs with Toledo invariant equal to *−*(2*g −* 2) rk*T*(*G*0*,* g1) it is **bijective**.
- Remains to see if it **preserves polystability.**
Cayley correspondence

- The inverse of the map given before (i.e. going from (G_0, \hat{g}_1)) to (*Z, V*)) can be directly seen to preserve stability.
- The other direction is harder, in fact requires the gauge theoretical point of view (Hitchin–Kobayashi correspondence) and some assumption on (*Z, V*).

Cayley correspondence

- The inverse of the map given before (i.e. going from (G_0, \hat{g}_1)) to (Z, V)) can be directly seen to preserve stability.
- The other direction is harder, in fact requires the gauge theoretical point of view (Hitchin–Kobayashi correspondence) and some assumption on (*Z, V*).

Theorem (García-Prada–G., 2023)

The Cayley map restricts to an embedding

 $\mathcal{M}_{max}(G_0, \hat{g}_1) \rightarrow \mathcal{M}_{K_C^m}(Z, V)$.

If (*Z, V*) *is a Vinberg θ-pair, the previous embedding is an isomorphism.*

Generalises the Cayley correspondence for Hermitian real forms of tube type (Biquard–García-Prada–Rubio, 2017) and for (*G*0*,* g1)–Higgs pairs (Biquard–Collier–García-Prada–Toledo, 2023). Button Alley and Alley

Miguel González Cyclic Higgs bundles and the Tole

Cayley correspondence example

- Consider the quiver grading of dimensions (1*,* 1*,* 1) in GL3.
- Fixing $V_0 \simeq V_1$ and $V_1 \simeq V_2$ gives $e \in \Omega \subseteq \mathfrak{g}_1$. Thus $Z = \mathcal{C}_{\mathcal{G}_0}(e) = \mathbb{C}^\times$ (embedded diagonally). *V* is a one-dimensional space corresponding to the weight 0 representation of \mathbb{C}^{\times} . Also (Z, V) is a Vinberg pair.

Cayley correspondence example

- Consider the quiver grading of dimensions $(1, 1, 1)$ in GL_3 .
- Fixing $V_0 \simeq V_1$ and $V_1 \simeq V_2$ gives $e \in \Omega \subseteq \mathfrak{g}_1$. Thus $Z = \mathcal{C}_{\mathcal{G}_0}(e) = \mathbb{C}^\times$ (embedded diagonally). *V* is a one-dimensional space corresponding to the weight 0 representation of \mathbb{C}^{\times} . Also (Z, V) is a Vinberg pair.
- The space of Higgs pairs with extremal Toledo invariant is $\mathcal{M}_{\mathcal{K}_C^3}(Z,V)$ which consists of pairs (L,φ) where L is a line bundle over *C* and $\varphi \in H^0({\mathcal K}_C^3)$. I.e. it is Pic $(C) \times H^0({\mathcal K}_C^3)$.

Cayley correspondence example

- Consider the quiver grading of dimensions $(1, 1, 1)$ in GL_3 .
- Fixing $V_0 \simeq V_1$ and $V_1 \simeq V_2$ gives $e \in \Omega \subseteq \mathfrak{g}_1$. Thus $Z = \mathcal{C}_{\mathcal{G}_0}(e) = \mathbb{C}^\times$ (embedded diagonally). *V* is a one-dimensional space corresponding to the weight 0 representation of \mathbb{C}^{\times} . Also (Z, V) is a Vinberg pair.
- The space of Higgs pairs with extremal Toledo invariant is $\mathcal{M}_{\mathcal{K}_c^3}(Z,V)$ which consists of pairs (L,φ) where L is a line bundle over *C* and $\varphi \in H^0(K_C^3)$. I.e. it is Pic(*C*) \times $H^0(K_C^3)$.
- $\mathsf{Such}\; \mathsf{a}\; \mathsf{pair}\; (\mathsf{L},\varphi) \;\mathsf{corresponds}\; \mathsf{to}\; \mathsf{E} = \mathsf{L}\otimes (\mathsf{K}_\mathsf{C}\oplus\mathcal{O}_\mathsf{C}\oplus\mathsf{K}_\mathsf{C}^{-1})$ $(0 \ 0 \ \varphi)$

with Higgs field
$$
\begin{pmatrix} 0 & 0 & \gamma \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}
$$
.

(ロ) (御) (唐) (唐) (唐) 2000

Application to the quaternionic grading

- Consider the pair (G_0, \hat{g}_1) for the quaternionic / highest root grading.
- In this case we can use that dim g*−*² = 1 and that (*G*0*,* g*−*2) is JM-regular to obtain:

Application to the quaternionic grading

- Consider the pair (G_0, \hat{g}_1) for the quaternionic / highest root grading.
- In this case we can use that dim g*−*² = 1 and that (*G*0*,* g*−*2) is JM-regular to obtain:

Theorem (García-Prada–G., 2023)

 Let $(E, \varphi) \in \mathcal{M}(G_0, \hat{\mathfrak{g}}_1)$ *. Then*

 $-(8g-8)$ ≤ $τ(E, φ)$ ≤ 4*g* − 4*.*

The bounds are attained except in type C, where we have

 $-(2g-2) \le \tau(E, \varphi) \le 2g-2.$

Application to the quaternionic grading II

• Similarly, except for type *C*, the pair (G_0, g_1) is always JM-regular and (*Z, V*) is always a Vinberg pair (since dim $V = 1$). Thus:

Application to the quaternionic grading II

Similarly, except for type *C*, the pair (G_0, \mathfrak{g}_1) is always JM-regular and (*Z, V*) is always a Vinberg pair (since dim $V = 1$). Thus:

Theorem (García-Prada–G., 2023)

Let $(E, \varphi) \in \mathcal{M}(G_0, \hat{\mathfrak{g}}_1)$ *and assume that we are not in type C. Then*

 $\mathcal{M}_{max}(G_0, \hat{\mathfrak{g}}_1) \simeq \mathcal{M}_{K_C^3}(Z, V).$

The example of the quiver grading of dimensions (1*,* 1*,* 1) from before is one of them.

Thank you!!

