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1 Introduction, the Hitchin fibration
We will start by recalling our object of interest: the Hitchin fibration. Let G be a complex
reductive group with Lie algebra g and X a compact Riemann surface of genus g ≥ 2.
We have the moduli space of (polystable) G-Higgs bundles MG, consisting of
polystable pairs (E,Φ) where E is a G-bundle and Φ ∈ H0(X,E(g) ⊗ K), with K the
canonical bundle of X.

The Hitchin fibration is defined via the G-invariants of g, C[g]G, which is, by the
Chevalley Restriction Theorem, a polynomial algebra generated by elements {p1, . . . , pr}
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of degrees di. These define the fibration

h : M(G) → A =
r⊕

i=1

H0(X,Kdi)

(E,Φ) 7→ (p1(Φ), . . . , pr(Φ))

In this talk we will be interested in describing the generic fibers using spectral curves.
This approach works when G is a classical group, so that we can view Higgs bundles in
terms of vector bundles with extra structure.

We will start with the case G = GL(n,C) and then move to the subgroups SL(n,C),
Sp(2n,C), SO(2m+ 1,C) and SO(2m,C) following the original paper by Hitchin. Then
we will see that it is possible to give a description for the split real form U(m,m), due
to Schaposnik, and we will comment on how the description generalizes for certain cyclic
Higgs bundles.

2 G = GL(n,C)
In the case of GL(n,C), g = gln = Matn(C) are just n × n matrices with complex
entries, and the generators of the invariant polynomial ring can be taken as the a1, . . . , an
appearing as coefficients of the characteristic polynomial of A ∈ g:

det(xI − A) = xn + a1(A)x
n−1 + · · ·+ an−1(A)x+ an(A)

On the other hand, a GL(n,C)-Higgs bundle can be seen in terms of vector bundles,
as a pair (E,Φ) where E is a holomorphic vector bundle over X and Φ : E → E ⊗K is
a holomorphic map. Thus

h(E,Φ) = (a1, . . . , an)

where ai ∈ H0(X,K i) are the sections appearing as the coefficients of the characteristic
polynomial of the map Φ.

Now, we fix such sections a = (a1, . . . , an) and we want to give a description of h−1(a).
This will be done using a curve S ⊆ K, called spectral curve, covering X and defined as
follows: let π : K → X. Then, the pullback π∗K is a bundle on K and has a tautological
section λ : K → π∗K. The spectral curve on K is given by the equation

λn + a1λ
n−1 + · · ·+ an−1λ+ an = 0

(We are abusing notation by writing ai instead of π∗ai. The left hand side is a section
of π∗Kn over K and S ⊆ K is defined by its zero locus)

The curve is a ramified covering π : S → X of degree n. For generic a it is irreducible.
Moreover, if we allow the values of a to change, we get a linear system of divisors on K
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which is base point free, so for generic values of a the resulting curve S is smooth. We
restrict to those a. The genus of S is gS = n2(g − 1) + 1 (from Riemann-Hurwitz or
adjunction formula).

We want to show:

Theorem 1. There is a bijective correspondence between holomorphic line bundles over
S of degree d′ and elements of the fiber h−1(a) of degree d, where

d = d′ + n(n− 1)(g − 1)

Thus, the fiber is an abelian variety (the Picard variety of S). Now we show the
correspondence. First, take a line bundle L → S. The vector bundle of the corresponding
Higgs pair is obtained via the direct image E = π∗L. Now, given an open subset U ⊂ X
and a section s ∈ H0(π−1(U), L), multiplication by the tautological section λ gives a
section s⊗ λ ∈ H0(π−1(U), L⊗ π∗K). In other words, we have the map

H0(π−1(U), L) → H0(π−1(U), L⊗ π∗K)

or, by definition of direct image,

H0(U,E) → H0(U,E ⊗K)

which translates into the vector bundle map Φ : E → E ⊗ K, completing the Higgs
pair. Moreover, by construction, the section λ gives the eigenvalues of Φ, and hence
det(λI−Φ) = 0. Since this is an irreducible polynomial (the polynomial defining S) then
it is the characteristic polynomial and h(E,Φ) = a.

Conversely, given the Higgs pair (E,Φ) ∈ h−1(a), we have on S that det(λ− π∗Φ) =
λn + a1λ

n−1 + · · · + an−1λ + an = 0. Hence, outside of the ramification divisor of S,
where over x ∈ X there are n distinct eigenvalues, we have well defined one dimensional
eigenspaces. These induce a line bundle L → S verifying:

L ⊂ ker(λ− π∗Φ) ⊂ π∗E

which corresponds to (E,Φ).
The relation between degrees can be obtained knowing that π∗L = E, via the formula:

d = deg π∗L = degL+deg π(g−1)−(gS−1) = d′+n(g−1)−n2(g−1) = d′−n(n−1)(g−1).

The dimension of the fiber h−1(a) after fixing the degree d, which is isomorphic to
Jac(S), is gS = 1 + n2(g − 1), that of the Hitchin base.
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3 G = SL(n,C)
In this case we have g = sln = Mat0n(C) the traceless n×n matrices with complex entries.
Generators of the invariant polynomial ring are still the coefficients of the characteristic
polynomial, a2, . . . , an, which now does not have linear term.

A SL(n,C)-Higgs bundle can be seen as a standard (GL(n,C), as above) Higgs bundle
(E,Φ) with the extra conditions that det(E) = O and tr Φ = 0.

The spectral curve S ⊂ K is defined as in the previous case by

λn + a2λ
n−2 + · · ·+ an−1λ+ an = 0

Notice that, using the already established correspondence from GL(n,C), we can
identify line bundles L → S and Higgs pairs with (E,Φ) satisfying tr Φ = 0. However,
one has to be more precise in order to single out the line bundles that also give det(E) = O.

First, since degE = 0, we are restricted to line bundles of fixed degree d′ = n(n−1)(g−
1). However, not every such line bundle will descend to an E with trivial determinant.
We have to recall the construction of the Prym variety.

Start with a morphism of curves f : A → B. This induces a homomorphism of
divisors, known as the Norm map:

Nm : Pic(A) → Pic(B)

via Nm(
∑

i nipi) =
∑

i nif(pi). Its kernel defines the prym variety: Prym(A,B) =
kerNm ⊆ Pic(A).

It was shown by Beauville, Narashiman and Ramanan that, in the context of the
spectral correspondence, one has

det(π∗L) ≃ Nm(L)⊗K−(n)(n−1)/2

Hence, the determinant is trivial if and only if Nm(L) ≃ Kn(n−1)/2 = Nm(π∗K(n−1)/2)
(we use that Nm(

∑
niπ

−1(pi)) = n
∑

nipi), thus if and only if M = L ⊗ π∗K−(n−1)/2 ∈
Prym(S,X). The dimension of this variety is

dimPrym(S,X) = dimJac(S)− dimJac(X) = gS − g = (n2 − 1)(g − 1)

which matches that of the Hitchin base.

4 G = Sp(2n,C)
Now we turn to the case of Sp(2n,C), the automorphisms of a 2n-dimensional symplectic
vector space (V, ⟨, ⟩) that preserve the symplectic form. The Lie algebra g = sp2nC
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consists of the endomorphisms A of the space such that ⟨Av,w⟩+ ⟨v, Aw⟩ = 0. Notice the
following: if A has distinct eigenvalues {λi}, with respective eigenvectors {vi}, one has

λi ⟨vi, vj⟩ = ⟨Avi, vj⟩ = −⟨vi, vj⟩ = −λj ⟨vi, vj⟩ .

Because the symplectic form is nondegenerate, it follows that form some j we have
λi = −λj. Thus the eigenvalues come in pairs {±λi} and the eigenspaces are paired by
the symplectic form. This also means that the characteristic polynomial is of the form

det(xI − A) = x2n + a2x
2n−2 + · · ·+ a2n−2x

2 + a2n.

The polynomials {a2, . . . , a2m} form a basis of generators for the invariant ring.
From the above, a Sp(2n,C)-Higgs bundle is a triple (E,Φ, ⟨, ⟩) where E is a holo-

morphic, rank 2n vector bundle over X, the map ⟨, ⟩ : E ⊗ E → O is a symplectic form
and Φ : E → E ⊗K satisfies ⟨Φv, w⟩ + ⟨v,Φw⟩ = 0. Moreover, the Hitchin map is still
given by the coefficient sections {a2i}ni=1 of the characteristic polynomial. The spectral
curve S ⊆ K is given by

λ2n + a2λ
2n−2 + · · ·+ a2n−2λ

2 + a2n = 0.

Similar to the previous cases, for generic a this is an irreducible, smooth curve of genus
gS = 4m2(g − 1) + 1 and, as before, we want to identify which line bundles L → S give
Sp(2n,C) Higgs bundles. For this, notice that the curve has an involution

σ : S → S

given by λ 7→ −λ, in other words, sending each eigenvalue to the opposite. We consider
the quotient ρ : S → S/σ = S̄. The goal is to see that the desired line bundles L are
in correspondence with points in Prym(S, S̄). Notice that such a point U ∈ Prym(S, S̄)
is given by a divisor D =

∑
p∈S npp such that 0 = Nm(D) =

∑
[p]={p1,p2}∈S̄(np1 + np2)[p],

hence we need that D + σD = 0. In other words, points in the Prym variety are those
with

σ∗U ≃ U∗.

Now, given a Sp(2n,C)-Higgs bundle (E,Φ, ⟨, ⟩), and letting L → S be the correspond-
ing line bundle obtained via eigenspaces, we have already seen that if all eigenvalues are
distinct, the eigenspace of λ and −λ are paired. Thus, the symplectic form gives a section
L∗ ⊗ σ∗L∗ which just vanishes at the ramification locus R of π : S → X. In other words:

L∗ ⊗ σ∗L∗ ≃ [R]

Taking degrees one sees that degR is even. Hence we can take T → S with T 2 = [R].
Then, we have that

U := L⊗ T
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is in the Prym variety. Indeed, σ∗U = σ∗L⊗σ∗T = L∗⊗ [R]∗⊗σ∗T = L∗⊗σ[R]∗⊗σ∗T =
L∗ ⊗ σ∗T ∗ = L∗ ⊗ T ∗ = U∗. We have used that σ∗ fixes [R] as can be seen from the first
expression above.

Conversely, such a point U defines L → S with the property L∗ ⊗ σ∗L∗ ≃ [R]. In
particular, σ defines a map L∗ → L which is nonvanishing away from the ramification
locus. Via the direct image, this induces the symplectic form on E.

The dimension of the fiber is then dimPrym(S, S̄) = gS − gS̄ = gS − (1
2
+ g(S)

2
−

n(g − 1)) = n(2n+ 1)(g − 1), where gS̄ can be obtained by Riemann-Hurwitz applied to
ρ : S → S̄. It is once again the same dimension as the Hitchin base.

5 G = SO(2n + 1,C)
We move to the case of SO(2n+1,C) of orthogonal, orientation preserving, automorphisms
of an 2n + 1-dimensional vector space V equipped with an inner product ⟨, ⟩. The Lie
algebra g = so2n+1C are the endomorphisms A with ⟨Av,w⟩ + ⟨v, Aw⟩ = 0. Since the
product is nondegenerate, the same considerations as in the previous case reveal that if
A has distinct eigenvalues, zero is always an eigenvalue and the others come in pairs ±λi.
The inner product pairs the eigenspaces for opposite eigenvalues, and the zero eigenspace
with itself. The characteristic polynomial is of the form

det(xI − A) = x(x2n + a2x
2n−2 + · · ·+ a2n−2x

2 + a2n),

and the elements {a2, . . . , a2n} are the basis of invariant polynomials.
A SO(2n + 1,C)-Higgs bundle is a triple (E,Φ, ⟨, ⟩) where E is a holomorphic, rank

2n + 1 vector bundle over X, the map ⟨, ⟩ : E ⊗ E → O is a non-degenerate symmetric
bilinear form and Φ : E → E ⊗K satisfies ⟨Φv, w⟩+ ⟨v,Φw⟩ = 0.

Notice that, since zero is always an eigenvalue, we have a well defined line subbundle
E0 := kerΦ ⊆ E. Moreover, the map Ω : (v, w) 7→ (Φv, w) is a well defined skew form on
E/E0, and it is a symplectic form on

V := E/E0 ⊗K− 1
2 .

(The fact that it is non-degenerate comes from observing that Λ2nV ≃ O, from the
knowledge that Λ2n+1E ≃ O, together with the fact that Ωn ∈ Λ2nE∗ ⊗ Kn ≃ E ⊗ Kn

defines an isomorphism when restricted to E0, that is, E0 ≃ Kn)
Moreover, Φ induces a map Φ′ : V → V ⊗K because it is well defined on E/E0, as

E0 is the kernel. It also satisfies the compatibility relation with Ω. This means that from
the SO(2n + 1,C) Higgs bundle we have obtained (V,Φ′,Ω), a Sp(2n,C)-Higgs bundle,
whose associated spectral curve is

λ2n + a2λ
2n−2 + · · ·+ a2n−2λ

2 + a2n = 0.
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We already know these bundles are given by Prym(S, S̄) and since the Hitchin base
of SO(2n + 1,C) matches that of Sp(2n,C), it is of the same dimension as the base.
However, it turns out that distinct (E,Φ) can result in the same (V,Φ′). So, in order to
fully specify an SO(2n+1,C)-Higgs bundle in the fiber, besides an element of Prym(S, S̄)
one needs to make a choice out of two options on each point in the vanishing locus of a2n.
Still, this gives a covering of Prym(S, S̄) so we have the same dimension.

6 G = SO(2n,C)
For the group G = SO(2n,C) with Lie algebra g = so2n(C), which is defined exactly as in
the previous case but for even dimensional vector spaces, the eigenvalues are still paired
with their opposites, and the characteristic polynomial is

det(xI − A) = x2n + a2x
2n−2 + · · ·+ a2n−2x

2 + a2n.

It may seem that this case can be treated in an identical way as the Sp(2n,C) one.
However, in this situation the coefficients do not constitute a basis for the invariant
polynomials. This is due to the fact that det = a2n = p2n, where pn is an invariant
polynomial of degree n known as the Pfaffian. The basis of invariant polynomials is now
{a2, . . . , a2n−2, pn}.

Hence, in the global picture, where SO(2n,C)-Higgs bundles are defined exactly as
above but for even rank, we have that the Hitchin base is A =

⊕n−1
i=1 H0(X,K2i) ⊕

H0(X,Kn). Given sections a = (a2, . . . , a2n−2, pn) ∈ A, we want to identify, as always,
the fiber h−1(a). For this we define the spectral curve S ⊂ K as

λ2n + a2λ
2n−2 + · · ·+ a2n−2λ

2 + p2n = 0

Now, the curve is no longer smooth at the generic fiber: instead, at the zero locus
of λ, that is, at points p ∈ S with λ(p) = 0 and hence pn(p) = 0 the spectral curve has
singularities (double points). There are degKn = 2n(g−1) of these singularities. We can
work instead with the nonsingular curve obtained after resolving the singularities

Ŝ → S.

Since the singularities are ordinary double points, one can retrieve the genus as

gŜ = gS − 2n(g − 1) = 2n(2n− 1)(g − 1) + 1.

As before, S has the involution σ : λ 7→ −λ, whose fixed points occur at the singular
locus of S. This involution extends to an involution of Ŝ without fixed points. Now it
is possible to argue exactly as in the Sp(2n,C) case, using the ramification divisor R of
π : Ŝ → X, to identify the fiber with Prym(Ŝ, Ŝ/σ).
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The dimension of the fiber can be obtained by first computing gŜ/σ by Riemann-
Hurwitz. We use that σ : Ŝ → Ŝ does not have fixed points, so the quotient covering is
unramified, and hence

2− 2gŜ = 2(2− 2gŜ/σ),

from which
dimPrym(Ŝ, Ŝ/σ) = gŜ − gŜ/σ = n(2n− 1)(g − 1).

Again, this is the dimension of the Hitchin base, half of that of the moduli space.

7 Hitchin systems associated to finite order automor-
phisms

Now that we have seen examples of the spectral description in the Hitchin systems for
G-bundles, we are going to introduce a new class of Hitchin fibrations, associated to a
complex reductive Lie group G with Lie algebra g = Lie(G) and a holomorphic finite order
automorphism, θ ∈ Autm(G). This also gives a holomorphic finite order automorphism
θ ∈ Autm(g). Then we will see some examples of the spectral curve description in these
cases.

The data of θ gives a Z/mZ-grading of the Lie algebra, g =
⊕

i∈Z/mZ gi, where each
piece is given by the weight space of θ of weight ζ i, where ζ is a primitive m-root of unity.

We denote by G0 ⊆ G the connected subgroup associated to g0. This will be reductive
and act on g1 (in fact in any gi) by restriction of the adjoint representation. The pair
(G0, g1) is an example of a Vinberg pair.

Definition 1. In the above setting, a (G0, g1)-Higgs bundle is a pair (E,Φ) where E is a
principal G0 bundle and Φ ∈ H0(E(g1)⊗K).

Remark 1. When θ is an involution, that is, m = 2, by Cartan theory it defines a
distinguished antiholomorphic involution σ ∈ Conj2(g), in other words, a real form of g.
A Higgs bundle for this involution then corresponds to a GR-Higgs bundle related to the
representations of the fundamental group of the surface in GR, a real form of G.

Vinberg pairs have a Chevalley-like restriction theorem, making the existence of a
Hitchin system possible. Let a ⊆ g1 be a Cartan subspace, that is, a maximal vector
subspace consisting only semisimple elements and such that [·, ·]|a×a ≡ 0. Define the little
Weyl group:

W (a) := NG0(a)/CG0(a).

Then W (a) is a finite complex group acting by reflections on c, and C[g1]G0 ≃ C[a]W (a),
so that the invariant ring is generated finitely and freely by homogeneus polynomials
{p1, . . . , pr}. Thus a Hitchin system is obtained in M(G0,g1).
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(Analogous results exist for the whole fixed point Gθ ⊆ G whose connected component
at the identity is G0, as well as its extension Gθ given by the normalizer of Gθ in G.)

Now we study spectral data for specific examples of this construction where G =
GL(n,C) in some of the situations we call quasi-split.

(For the split cases, namely the split real form of GL(n,C), it is shown by Schaposnik
that one can find the elements corresponding to this form in the generic fibers as those
with order 2 in the abelian variety, where the origin is chosen to be the Hitchin section.
This works for the other classical groups as well).

8 G = U(k, k)

Our first example is given by the quasi-split real form U(k, k) ⊂ GL(2k,C). These are
the automorphisms of a 2k-dimensional vector space V equipped with an hermitian form
⟨, ⟩ of indefinite type (k, k) that preserve the form. The Lie algebra u(k, k) consists of
endomorphisms A such that ⟨Av,w⟩ + ⟨v, Aw⟩ = 0. This Lie algebra is obtained as the
fixed points of an antiholomorphic involution in gl2kC: such endomorphisms are given by
matrices A with −Ik,kAtIk,k = A, where Ik,k = Ik ⊕ −Ik. Via this involution, as well as
the compact antiholomorphic involution τ(A) = At, we get the Cartan decomposition:

u(k, k) = (u(k)⊕ u(k))⊕mR

which complexifies to
gl2kC = (glkC⊕ glkC)⊕m,

where m are the off-diagonal endomorphisms. Denote by H = GL(k,C) × GL(k,C).
Then, H acts on m and a U(k, k)-Higgs bundle is defined as a pair (E,Φ) with E a
principal H-bundle and Φ ∈ H0(X,E(m)⊗K). In terms of vector bundles:

Definition 2. A U(k, k)-Higgs bundle is a pair (E,Φ) such that E = W0 ⊕W1 is a rank
2k holomorphic vector bundle that splits in two rank k pieces, and Φ : E → E⊗K verifies
Φ(Wi) ⊆ Wi+1 ⊗K, where indices are taken mod 2.

It is easy to see that an element A ∈ m is conjugate (via the action of H) to −A.
Thus, whenever an eigenvalue λ appears, so does −λ and the characteristic polynomial
has the form

det(xI − A) = x2k + a2x
2k−2 + · · ·+ a2k−2x

2 + a2k.

The polynomial coefficients {a2, . . . , a2n} are a basis for the invariant polynomials
C[m]H , and hence they provide the Hitchin map. As usual, we describe the fibers with
the spectral curve S ⊆ K given by the equation

det(λI − A) = λ2k + a2λ
2k−2 + · · ·+ a2k−2λ

2 + a2k.
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We already know that line bundles L → S are in correspondence with standard Higgs
pairs (E,Φ), and we want to determine which ones give U(k, k)-Higgs bundles. It turns
out, as proven by L. Schaposnik, that these are precisely the line bundles L with σ∗L ≃ L,
where σ : S → S is the already mentioned involution given by λ → −λ.

The proof of this fact is as follows. Such a line bundle allows to lift σ as an involution
of L over the involution in S. Then, we decompose sections H0(π−1(U), L) into the
invariant and anti-invariant parts with respect to σ. Each of those two parts descends,
via the direct image, to rank k factors of E. Moreover, since the Higgs field is defined
by multiplication by λ, which gets sent to −λ via σ, it swaps invariant and anti-invariant
sections and gives the desired behavior for Φ via the direct image.

Let us explain in a bit more of detail. Over a point x ∈ S which is not a branch
point of π (i.e. Φ|x has distinct eigenvalues, coming in pairs by opposites), if we set
π−1(x) = {s1, . . . , s2k} we can choose a basis of π∗(L)|x = L|s1 ⊕· · ·⊕L|s2k that looks like
{e1, . . . , ek, σe1, . . . , σek}. Then the subspace of invariant elements is given in that basis
by coordinates (α, α) and the subspace of anti-invariants is given by (α,−α). This local
inspection shows that globally both parts are subspaces of rank k.

One can recover the topological invariant (d0, d1) = (degW0, degW1) from the spectral
data by looking at the fixed points of σ, which are the 4k(g − 1) vanishing points of a2n.
Because σ∗L ≃ L, the map σ lifts to an involution of the fiber L|x at such fixed points x.
There are two possibilities: σ acting as +1 or −1. We let M0 and M1 count the number
of points of each case.

We can get the degrees d0 and d1 by applying Riemann-Roch to the spaces of invariant
and anti-invariant sections of L, but for this we need the respective dimensions h0 and h1.
Regular Riemann-Roch applied to L allows us to find h0 + h1. The key remaining piece
is the holomorphic Lefschetz theorem which gives h0 − h1.

We can recall this Holomorphic Lefschetz theorem: we have σ : S → S lifting to
σ′ : L → L, and in the particular case H i(S, L) = 0 for each i > 0. Then the trace ξ of
(σ, σ′) acting on sections H0(S, L) is given by

ξ =
∑
P

trσ′|P
det(1− dσ|P )

,

where the sum is over σ-fixed points.
(Detail: Both in Riemann-Roch and above we do not use L itself, but rather L ⊗ L′

where L′ is a line bundle of high degree such that σ acts by +1 at every fixed point, this
does not affect the type of each point and ensures vanishing of nonzero cohomology. The
extra term degL′ gets cancelled upon solving the system).

The resulting degrees are:

dj =
degL+ αj,0M0 + αj,1M1

2
+ (k − 2k2)(g − 1),

for rational coefficients αj,l that can be precisely determined.
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An interesting application for this spectral data is obtaining a bound for the Toledo
invariant τ = d0 − d1, which is a topological invariant governing the topology of the
moduli space. Using the previous expressions, one finds

|τ | ≤ |2k(g − 1)−M1| ≤ 2k(g − 1),

which is the well known Milnor-Wood inequality.

9 Cyclic Higgs bundles of ranks (k, k, . . . , k)

The above analysis can be extended for cyclic Higgs bundles of type (k, k, . . . , k). We
quickly recall that these are Higgs bundles associated to a certain Z/mZ-grading of the
lie algebra, g = glmkC =

⊕
i∈Z/mZ gi, given by

gi = {A ∈ g : Ik,k,...,kAI
−1
k,k,...,k = ζ iA},

where ζ is a primitive m-th root of unity and Ik,k,...,k = Ik ⊕ ζIk ⊕ · · · ⊕ ζm−1Ik. In
other words, splitting a km-dimensional vector space V into m pieces Vi which are k-
dimensional, the grading in g = End(V ) is given by gi =

⊕
j Hom(Vj, Vj+i).

These allow to define cyclic Higgs bundles as pairs (E,Φ) where E is a principal
G0-bundle, and Φ ∈ H0(X,E(g1)⊗K). In terms of vector bundles:

Definition 3. An m-cyclic Higgs bundle of type (k, k, . . . , k) is a pair (E,Φ) such that
E = W0⊕W1⊕· · ·⊕Wm−1 is a rank mk holomorphic vector bundle that splits in m rank
k pieces, and Φ : E → E ⊗K verifies Φ(Wi) ⊆ Wi+1 ⊗K, where indices are taken mod
m.

As before, it is easy to see that an element A ∈ g1 is conjugate via the action of G0

to ζA (and, in turn, to each ζ iA). Thus, if an eigenvalue λ apears, so do all the ζ iλ and
the characteristic polynomial looks like

det(xI − A) = xmk + amx
mk−m + · · ·+ amk−mx

m + amk.

The polynomial coefficients {am, . . . , amk} give a basis for C[g1]G0 and provide the
Hitchin map. Exactly as before, we describe the fibers with the spectral curve S ⊆ K
given by the equation

det(λI − A) = λmk + amλ
mk−m + · · ·+ amk−mλ

m + amk.

Reasoning exactly as in the m = 2 case with the automorphism σ : λ → ζλ of the
curve, that is, decomposing the sections of L into the i-invariant parts (meaning sections
where σ acts by multiplication by ζ i), one sees that the line bundles L → S that give
cyclic Higgs bundles are precisely those with σ∗L = L.
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If we want to do a local study as before to check that indeed each piece is of rank
k, we notice that in a basis of the form {e1, . . . , ek, σe1, . . . , σek, . . . , σm−1e1, . . . , σ

m−1ek}
the action of σ on coordinates is (v0, v1, . . . , vm−1) 7→ (vm−1, v0, . . . , vm−2). Thus each i-th
invariant part is given by coordinates (α, ζ i(m−1)α, . . . , ζ iα).

It is posible to retrieve the degrees dj of each Wi as before. We split the 2km(g − 1)
fixed points of σ into m types, depending on the factor ζ i by which σ acts on L|x. We
count each type as M0, . . . ,Mm−1. As before, we want the dimensions hi of the i-th
invariant sections. Regular Riemann-Roch gives h0 + h1 + · · · + hm−1. The holomorphic
Lefschetz theorem applied to each power σi gives h0 + ζ ih1 + · · ·+ ζ i(m−1)hm−1. In turn,
one gets:

dj =
1

m

(
degL+

m−1∑
l=0

αj,lMl

)
+ (k −mk2)(g − 1),

where the αj,l are rational coefficients that can be precisely identified.
An interesting corollary of the spectral data occurs by examining the Toledo invari-

ant that exists when the map from Wm−1 to W0 is identically zero. In that case, we have
an holomorphic chain and there is an invariant

τ = 2
m−1∑
j=0

(
j − m− 1

2

)
dj.

We can examine what happens with this invariant in the cyclic case (that is, the
previously mentioned map no longer needs to be zero) via the spectral data. Putting
everything together one gets:

|τ | ≤ km(m− 1)(m+ 1)

3
.

This is the Arakelov-Milnor inequality which exists for holomorphic chains. This
reasoning proves that in this case it holds for arbitrary cyclic Higgs bundles as well.
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