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G-Higgs bundles

G connected semisimple complex Lie group, Lie algebra g

X compact Riemann surface, g ⩾ 2, canonical KX

A G-Higgs bundle (E, φ) over X:
E a principal G-bundle over X
φ a holomorphic section of E(g)⊗ KX (Higgs field)
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Moduli space of G-Higgs bundles

Moduli space of polystable G-Higgs bundles M(G).
T∗N (G) ⊆ M(G) open ⇝ symplectic strucutre ω (on smooth
locus)
Hitchin map hG : M(G) → A(G) :=

⊕
i H0(C,Kdi

X), proper.
Natural C×-action:

(E, φ) 7→ (E, λφ)

Limits when λ→ 0 exist and are fixed.

Definition
The upward flow of the fixed point (E, φ) ∈ M(G)C× :

W+
(E,φ) :=

{
(E′, φ′) : lim

λ→0
(E′, λφ′) = (E, φ)

}
⊆ M(G)

Complex Lagrangian subvarieties (BAA-brane, mirror in M(G∨))
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Very stable G-Higgs bundles

Definition (Hausel–Hitchin, 2022)
Smooth fixed point (E, φ) ∈ M(G)sC× is very stable if
W+

(E,φ) ∩ h−1
G (0) = {(E, φ)}. Equivalently, if W+

(E,φ) ⊆ M(G) is
closed. Otherwise, it is wobbly.

Drinfeld and Laumon: E stable G-bundle ⇝ (E, 0) very stable
⇐⇒ no nonzero nilpotent φ ∈ H0(E(g)⊗ KX).
Motivation: Identifies simplest C×-invariant closed complex
Lagrangians. hG is proper on W+

(E,φ), easier study of mirror.

Question
Can we describe which fixed points are very stable?
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Example G = PGLn(C)

Take G = PGLn(C) (or GLn(C)). E is a rank n vector bundle,
φ : E → E ⊗ KX traceless.

Fixed points are related to chains: E =
⊕m

j=1 Ej,
φ(Ej) ⊆ Ej+1 ⊗ KX.

E1 E2KX . . . EmKm−1
X

φ1 φ2 φm−1

The type of a fixed point is (rkE1, . . . , rkEm).
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Example G = PGLn(C) II

Type (n): (E, 0) with E stable vector bundle. Nonempty open
dense subset of very stable (Laumon, 1988).

Type (1, 1, . . . , 1): (Hausel–Hitchin, 2022) Simplest example:

E = O ⊕ K−1
X ⊕ · · · ⊕ K−n+1

X

φ0 =


0 0 . . . 0 0
1 0 . . . 0 0
0 1 . . . 0 0
... ... . . . ... ...
0 0 . . . 1 0

 φa =


0 0 . . . 0 −an
1 0 . . . 0 −an−1
0 1 . . . 0 −an−2
... ... . . . ... ...
0 0 . . . 1 0


for a = (ai)n

i=2 ∈ A(G). (E, φ0) is fixed, upward flow is {(E, φa)}a
Hitchin section ⇝ very stable.

Miguel González Very stable regular G-Higgs bundles ICMAT



Example G = PGLn(C) III

In general, fixed points of type (1, 1, . . . , 1) are

E = O⊕K−1
X (D1)⊕K−2

X (D1 +D2)⊕· · ·⊕K−n+1
X (D1 + · · ·+Dn−1)

φ =


0 0 . . . 0 0
φ1 0 . . . 0 0
0 φ2 . . . 0 0
... ... . . . ... ...
0 0 . . . φn−1 0


with div(φj) = Dj.

Theorem (Hausel–Hitchin, 2022)
Stable fixed point (E, φ) of type (1, 1, . . . , 1) is very stable if and
only if D1 + · · ·+ Dn−1 is reduced.
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Example G = PGLn(C) IV and G = SO2n(C)

Other types: (Peón–Nieto, 2024), e.g. type
(n1, n2) /∈ {(1, 1), (2, 1), (1, 2)} are wobbly.
Other groups? G = SO2n(C). One type is

E = (L1 ⊕ · · · ⊕ Ln)⊕ (L∗
n ⊕ · · · ⊕ L∗

1),

φ =



0
φ1

. . .

. . . 0
φn−1 0
φn 0 0

−φt
n −φt

n−1
. . .
. . . 0

−φt
1 0


.
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Fixed points in M(G)

Fixed points given by Z-gradings:

g =
⊕
j∈Z

gj

with [gj, gk] ⊆ gj+k.
[g0, g0] ⊆ g0 ⇝ G0 ⊆ G connected subgroup.
[g0, gj] ⊆ gj ⇝ representation G0 → GL(gj).

Prop. (Simpson 1988, Biquard–Collier–García-Prada–Toledo, 2023)
Fixed points (E, φ) ∈ M(G)C× characterised by:

E reduces to EG0 a G0-bundle.
φ ∈ H0(EG0(gj)⊗ KX) for j 6= 0

Called (G0, gj)-Higgs pairs.
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Example of Z-grading
G = PGLn(C). Gradings of sln(C) given by dividing matrices in
blocks with squares in the diagonal.

g0 g−1 . . . g1−m
g1 g0 . . . g2−m
... ... . . . ...

gm−1 gm−2 . . . g0

.
I.e. by block size choices (n1, . . . , nm).

G0 = P(GLn1(C)× · · · × GLnm(C)) = P(Aut(V1)× · · · × Aut(Vm))

g1 =
m−1⊕
i=1

Hom(Vi,Vi+1).

A (G0, g1)-Higgs pair precisely defines a chain of type
(n1, . . . , nm).
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Fixed points of Borel type

Question (recall)
Can we describe which fixed points are very stable?

Focus on regular nilpotent Higgs field. These are of Borel type.

Definition
Let T ⊆ G be a maximal torus and
Π = {α1, . . . , αr} ⊆ ∆ := ∆(g, t) be a system of simple roots. The
Borel grading is defined by t = g0 and gαi ⊆ g1.

Definition
A fixed point (E, φ) is of Borel type if it reduces to (G0, g1) for
the Borel grading.
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Borel type for G = PGLn(C)
Take G = PGLn(C).

g0 g−1 . . . g1−m
g1 g0 . . . g2−m
... ... . . . ...

gm−1 gm−2 . . . g0

.
Borel grading (G0 a torus) has block sizes (1, 1, . . . , 1). Recall:
E = O⊕K−1

X (D1)⊕K−2
X (D1 +D2)⊕· · ·⊕K−n+1

X (D1 + · · ·+Dn−1)

φ =


0 0 . . . 0 0
φ1 0 . . . 0 0
0 φ2 . . . 0 0
... ... . . . ... ...
0 0 . . . φn−1 0


with div(φj) = Dj. Very stable ⇐⇒ D1 + · · ·+ Dn−1 reduced
(Hausel–Hitchin, 2022).
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Borel type for G = SO2n(C)

E = (L1 ⊕ · · · ⊕ Ln)⊕ (L∗
n ⊕ · · · ⊕ L∗

1),

φ =



0
φ1

. . .

. . . 0
φn−1 0
φn 0 0

−φt
n −φt

n−1
. . .
. . . 0

−φt
1 0


.

We get divisors Dj := div(φj).

Proposition
Very stable ⇐⇒ D1 + 2D2 + · · ·+ 2Dn−2 +Dn−1 +Dn is reduced.
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Borel type for G = SO2n+1(C)

E = (L1 ⊕ · · · ⊕ Ln)⊕OC ⊕ (L∗
n ⊕ · · · ⊕ L∗

1),

φ =



0
φ1

. . .

. . . 0
φn−1 0

φn 0
−φt

n 0
−φt

n−1
. . .
. . . 0

−φt
1 0


.

We get divisors Dj := div(φj).
Proposition
Fixed point is very stable ⇐⇒ D1 + 2D2 + · · ·+ 2Dn is reduced.
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Borel type for G = Sp2n(C)

E = (L1 ⊕ · · · ⊕ Ln)⊕ (L∗
n ⊕ · · · ⊕ L∗

1)

φ =



0
φ1

. . .

. . . 0
φn−1 0

φn 0
−φt

n−1
. . .
. . . 0

−φt
1 0


.

We get divisors Dj := div(φj).

Proposition
Fixed point is very stable ⇐⇒ 2D1 + · · ·+ 2Dn−1 +Dn is reduced.
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Multiplicity divisor
Why? General phenomenon.

g1 =
⊕
αi∈Π

gαi

G0 = T ↷ gαi

Map E(g1) → E(gαi) gives φi ∈ H0(E(gαi)⊗ KX) sections of
line bundles.
Divisors Di := div(φi).

Fundamental coweights: {ω∨
1 , . . . , ω

∨
r } ⊆ t, dual basis to Π ⊆ t∗.

Definition
For a fixed point (E, φ) ∈ M(G)C× of Borel type, we define its
multiplicity divisor:

µ(E, φ) :=
r∑

i=1
Diω

∨
i .

Divisor on X whose coefficients are (dominant) coweights.
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Minuscule coweights

There is a partial ordering on the space of dominant
coweights of g.

λ ⩾ µ ⇐⇒ λ− µ is a sum of positive coroots .

Minimal dominant coweights are called minuscule.
Representations of g∨ with a single Weyl orbit of weights.

For example:
g = sln(C) has the trivial (0) and every k-th exterior power of
the standard (ω∨

k ).
g = so2n(C) has the trivial (0), the standard (ω∨

1 ), and two
more (ω∨

n−1, ω
∨
n ).

E8,F4,G2 only have the trivial (0).
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Classification theorem

Recall:
(E, φ) ∈ MsC×

(G) smooth fixed point of Borel type.
φ⇝ φi ⇝ Di ⇝ µ(E, φ) a dominant coweight at each point.
Notion of minimality for dominant coweights.

Theorem
Let (E, φ) ∈ MsC×

(G) be a smooth fixed point of Borel type. It is
very stable if and only if µ(E, φ)|x is minuscule at every x ∈ X.
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Consequences

Concrete descriptions in classical groups from before.
We can say which components (of Borel type) have very stable
points. Indeed, the topological type of the fixed point in
π1(G0) ' Zr is determined by deg µ(E, φ) :=

∑
x∈X µ(E, φ)|x.

(Hausel–Hitchin, 2022) Every component has very stable
points for g = sln(C). Indeed all ω∨

i are minuscule in this case.
Not at all for other g. Extreme case: E8,F4,G2 require
regularity everywhere.
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Strategy: Hecke transformations
Fixed points of Borel type can be related by Hecke
transformations. Fix x ∈ X and let X0 := X ∖ {x}.

Definition
A Hecke transformation of a G-Higgs bundle (E, φ) at x is
(E′, φ′, ψ) where (E′, φ′) is another G-Higgs bundle together with
an isomorphism

ψ : (E′, φ′)|X0
∼−→ (E, φ)|X0 .

Trivialise E over X0 as well as over a formal disk X1 ' D
around x ∈ X.
Transition function over X01 := X0 ∩ X1 ' D∗.

fE : X01 → G.

i.e. a (meromorphic) loop in G, so fE ∈ LG.
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The affine Grassmannian

Hecke transformations: change the transition function
fE ∈ LG by fEσ for a loop σ ∈ LG.
If σ ∈ L+G, i.e. comes from a disk in G, result is isomorphic.
Therefore{

Hecke transformations
of (E,0) at x

}
↔

{
points in affine Grassmannian

GrG := LG/L+G

}
(non canonically). See (Wong, 2013).
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Affine Springer fibre

What about φ?
Locally, φ1 : C1 → g, i.e. in L+g.
Given σ ∈ LG, it transforms to Adσ−1 φ1 ∈ Lg, a priori only
over X01.
We then ask

Adσ−1 φ1 ∈ L+g,

which defines the affine Springer fibre over φ1.{
Hecke transformations

of (E, φ) at x

}
↔

{
points in an affine Springer fibre

given by φ in GrG .

}
.
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C×-action on GrG

C×-action on the affine Springer fibre such that if σ gives
(E′, φ′) then λ · σ gives (E′, λφ′).
Its fixed points (cocharacters of T = G0) produce C×-fixed
Higgs bundles.
Can produce curves between C×-fixed Higgs bundles from
curves in the affine Springer fibre.
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Wobbly fixed points

Consider (E, φ) ∈ MsC×
(G) smooth fixed point of Borel type

with µ(E, φ)|x = µ not minuscule.
There is a positive coroot α∨ ∈ ∆∨

+ with µ− α∨ dominant.
In the affine Grassmannian, there is an (explicit) curve
connecting the identity and α∨.
Hecke transformation produces curve connecting (E, φ) with
(E′, φ′) such that µ(E′, φ′)|x = µ− α∨.
(Key step) Can always choose some α∨ so that the curve is
in the affine Springer fibre and stability is preserved.
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Very stable fixed points

Now µ(E, φ)|x is minuscule for all x ∈ X.
Wobbly means there is a C×-invariant curve connecting (E, φ)
with another fixed point.
(Key step) This curve comes from Hecke transformation
of a similar curve flowing to (E′, φ′) ∈ M(G)sC× , a Hecke
transformation of (E, φ) such that µ(E′, φ′) has smaller
support.
Arrive at the case µ(E, φ) = 0 (everywhere regular φ) which is
very stable.
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Thank you!
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