Very stable regular *G*-Higgs bundles

Miguel González (ICMAT) arXiv:2503.01289

Séminaire d'Analyse et Géometrie Institut de Mathématiques de Jussieu-Paris Rive Gauche

May 13 2025

G-Higgs bundles

G connected semisimple complex Lie group, Lie algebra $\mathfrak g$

X compact Riemann surface, $g \ge 2$, canonical K_X

A *G*-**Higgs bundle** (E, φ) over X:

- E a principal G-bundle over X
- φ a holomorphic section of $E(\mathfrak{g}) \otimes K_X$ (**Higgs field**)

Moduli space of G-Higgs bundles

- **Moduli space** of polystable *G*-Higgs bundles $\mathcal{M}(G)$.
- Hyperkähler metric \leadsto symplectic strucutre ω (on smooth locus)
- **Hitchin map** $h_G: \mathcal{M}(G) \to \mathcal{A}(G) := \bigoplus_i H^0(C, K_X^{d_i})$, proper.
- Natural C[×]-action:

$$(E,\varphi)\mapsto (E,\lambda\varphi)$$

• Limits when $\lambda \to 0$ exist and are fixed.

Definition

The **upward flow** of the fixed point $(E, \varphi) \in \mathcal{M}(G)^{\mathbb{C}^{\times}}$:

$$W_{(E,\varphi)}^+ := \left\{ (E',\varphi') : \lim_{\lambda \to 0} (E',\lambda \varphi') = (E,\varphi) \right\} \subseteq \mathcal{M}(G)$$

Complex Lagrangian subvarieties (BAA-brane, mirror in $\mathcal{M}(G^{\vee})$)

Very stable G-Higgs bundles

Definition (Hausel–Hitchin, 2022)

Smooth fixed point $(E,\varphi) \in \mathcal{M}(G)^{s\mathbb{C}^{\times}}$ is **very stable** if $W_{(E,\varphi)}^+ \cap h_G^{-1}(0) = \{(E,\varphi)\}$. Equivalently, if $W_{(E,\varphi)}^+ \subseteq \mathcal{M}(G)$ is closed. Otherwise, it is **wobbly**.

- Drinfeld and Laumon: E stable G-bundle \leadsto (E,0) very stable \iff no nonzero nilpotent $\varphi \in H^0(E(\mathfrak{g}) \otimes K_X)$.
- Motivation: Identifies simplest \mathbb{C}^{\times} -invariant closed complex Lagrangians. h_G is proper on $W_{(E,\varphi)}^+$, easier study of mirror.

Question

Can we describe which fixed points are very stable?

Example $G = \operatorname{PGL}_n(\mathbb{C})$

Take $G = \operatorname{PGL}_n(\mathbb{C})$ (or $\operatorname{GL}_n(\mathbb{C})$). E is a rank n vector bundle, $\varphi : E \to E \otimes K_X$ traceless.

Fixed points are related to **chains**: $E = \bigoplus_{j=1}^{m} E_j$, $\varphi(E_j) \subseteq E_{j+1} \otimes K_X$.

$$E_1 \xrightarrow{\varphi_1} E_2 K_X \xrightarrow{\varphi_2} \dots \xrightarrow{\varphi_{m-1}} E_m K_X^{m-1}$$

The **type** of a fixed point is $(rk E_1, ..., rk E_m)$.

Example $G = \operatorname{PGL}_n(\mathbb{C})$ II

Type (n): (E,0) with E stable vector bundle. Nonempty open dense subset of very stable (Laumon, 1988).

Type (1, 1, ..., 1): (Hausel–Hitchin, 2022) Simplest example:

$$E = \mathcal{O} \oplus K_X^{-1} \oplus \cdots \oplus K_X^{-n+1}$$

$$arphi_0 = egin{pmatrix} 0 & 0 & \dots & 0 & 0 \ 1 & 0 & \dots & 0 & 0 \ 0 & 1 & \dots & 0 & 0 \ dots & dots & \ddots & dots & dots \ 0 & 0 & \dots & 1 & 0 \end{pmatrix}$$

$$\varphi_{0} = \begin{pmatrix} 0 & 0 & \dots & 0 & 0 \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \end{pmatrix} \qquad \qquad \varphi_{a} = \begin{pmatrix} 0 & 0 & \dots & 0 & -a_{n} \\ 1 & 0 & \dots & 0 & -a_{n-1} \\ 0 & 1 & \dots & 0 & -a_{n-2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \end{pmatrix}$$

for $a = (a_i)_{i=2}^n \in \mathcal{A}(G)$. (E, φ_0) is fixed, upward flow is $\{(E, \varphi_a)\}_a$ Hitchin section → very stable.

Example $G = \operatorname{PGL}_n(\mathbb{C})$ III

In general, fixed points of type $(1,1,\ldots,1)$ are

$$E = \mathcal{O} \oplus K_X^{-1}(D_1) \oplus K_X^{-2}(D_1 + D_2) \oplus \cdots \oplus K_X^{-n+1}(D_1 + \cdots + D_{n-1})$$

$$\varphi = \begin{pmatrix} 0 & 0 & \dots & 0 & 0 \\ \varphi_1 & 0 & \dots & 0 & 0 \\ 0 & \varphi_2 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & \varphi_{n-1} & 0 \end{pmatrix}$$

with $\operatorname{div}(\varphi_j) = D_j$.

Theorem (Hausel-Hitchin, 2022)

Stable fixed point (E, φ) of type (1, 1, ..., 1) is very stable if and only if $D_1 + \cdots + D_{n-1}$ is reduced.

Example $G = \operatorname{PGL}_n(\mathbb{C})$ IV and $G = \operatorname{SO}_{2n}(\mathbb{C})$

- Other types: (Peón–Nieto, 2024), e.g. type $(n_1, n_2) \notin \{(1, 1), (2, 1), (1, 2)\}$ are wobbly.
- Other groups? $G = SO_{2n}(\mathbb{C})$. One type is

$$\varphi = \begin{pmatrix} 0 & & & & \\ \varphi_1 & \ddots & & & \\ & \ddots & 0 & & \\ & & \varphi_{n-1} & 0 & \\ & & & \varphi_n & 0 & 0 \\ & & & & -\varphi_{n-1}^t & \ddots \\ & & & & \ddots & 0 \\ & & & & -\varphi_{n-1}^t & \ddots \\ & & & & \ddots & 0 \\ & & & & -\varphi_{n-1}^t & 0 \end{pmatrix}.$$

Fixed points in $\mathcal{M}(G)$

Fixed points given by \mathbb{Z} -gradings:

$$\mathfrak{g}=\bigoplus_{j\in\mathbb{Z}}\mathfrak{g}_j$$

with $[\mathfrak{g}_j,\mathfrak{g}_k]\subseteq \mathfrak{g}_{j+k}$. $[\mathfrak{g}_0,\mathfrak{g}_0]\subseteq \mathfrak{g}_0\leadsto G_0\subseteq G$ connected subgroup. $[\mathfrak{g}_0,\mathfrak{g}_j]\subseteq \mathfrak{g}_j\leadsto$ **representation** $G_0\to \mathsf{GL}(\mathfrak{g}_j)$.

Prop. (Simpson 1988, Biquard-Collier-García-Prada-Toledo, 2023)

Fixed points $(E, \varphi) \in \mathcal{M}(G)^{\mathbb{C}^{\times}}$ characterised by:

- E reduces to E_{G_0} a G_0 -bundle.
- $\varphi \in H^0(E_{G_0}(\mathfrak{g}_j) \otimes K_X)$ for $j \neq 0$

Called (G_0, \mathfrak{g}_i) -Higgs pairs.

Example of \mathbb{Z} -grading

 $G = \mathrm{PGL}_n(\mathbb{C})$. Gradings of $\mathfrak{sl}_n(\mathbb{C})$ given by dividing matrices in blocks with squares in the diagonal.

$$\begin{pmatrix}
\mathfrak{g}_0 & \mathfrak{g}_{-1} & \cdots & \mathfrak{g}_{1-m} \\
\mathfrak{g}_1 & \mathfrak{g}_0 & \cdots & \mathfrak{g}_{2-m} \\
\vdots & \vdots & \ddots & \vdots \\
\mathfrak{g}_{m-1} & \mathfrak{g}_{m-2} & \cdots & \mathfrak{g}_0
\end{pmatrix}.$$

I.e. by block size choices (n_1, \ldots, n_m) .

$$G_0 = \mathrm{P}(\mathsf{GL}_{n_1}(\mathbb{C}) imes \cdots imes \mathsf{GL}_{n_m}(\mathbb{C})) = \mathrm{P}(\mathsf{Aut}(V_1) imes \cdots imes \mathsf{Aut}(V_m))$$
 $M = 1$

$$\mathfrak{g}_1 = igoplus_{i=1}^{m-1} \mathsf{Hom}(\mathit{V}_i, \mathit{V}_{i+1}).$$

A (G_0, \mathfrak{g}_1) -**Higgs pair** precisely defines a **chain** of type (n_1, \ldots, n_m) .

Fixed points of Borel type

Question (recall)

Can we describe which fixed points are very stable?

Focus on regular nilpotent Higgs field. These are of Borel type.

Definition

Let $T \subseteq G$ be a maximal torus and

 $\Pi = \{\alpha_1, \dots, \alpha_r\} \subseteq \Delta := \Delta(\mathfrak{g}, \mathfrak{t})$ be a system of simple roots. The **Borel grading** is defined by $\mathfrak{t} = \mathfrak{g}_0$ and $\mathfrak{g}_{\alpha_i} \subseteq \mathfrak{g}_1$.

Definition

A fixed point (E, φ) is of **Borel type** if it reduces to (G_0, \mathfrak{g}_1) for the Borel grading.

Borel type for $G = \operatorname{PGL}_n(\mathbb{C})$

Take $G = \operatorname{PGL}_n(\mathbb{C})$.

$$\begin{pmatrix}
\mathfrak{g}_0 & \mathfrak{g}_{-1} & \cdots & \mathfrak{g}_{1-m} \\
\mathfrak{g}_1 & \mathfrak{g}_0 & \cdots & \mathfrak{g}_{2-m} \\
\vdots & \vdots & \ddots & \vdots \\
\mathfrak{g}_{m-1} & \mathfrak{g}_{m-2} & \cdots & \mathfrak{g}_0
\end{pmatrix}.$$

Borel grading (G_0 a torus) has block sizes (1, 1, ..., 1). Recall:

$$E = \mathcal{O} \oplus K_X^{-1}(D_1) \oplus K_X^{-2}(D_1 + D_2) \oplus \cdots \oplus K_X^{-n+1}(D_1 + \cdots + D_{n-1})$$

$$\varphi = \begin{pmatrix} 0 & 0 & \dots & 0 & 0 \\ \varphi_1 & 0 & \dots & 0 & 0 \\ 0 & \varphi_2 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & \varphi_{n-1} & 0 \end{pmatrix}$$

with $\operatorname{div}(\varphi_j) = D_j$. Very stable $\iff D_1 + \cdots + D_{n-1}$ reduced (Hausel–Hitchin, 2022).

Borel type for $G = SO_{2n}(\mathbb{C})$

We get divisors $D_j := \operatorname{div}(\varphi_j)$.

Proposition

Very stable $\iff D_1 + 2D_2 + \cdots + 2D_{n-2} + D_{n-1} + D_n$ is reduced.

Borel type for $G = SO_{2n+1}(\mathbb{C})$

$$F = (L_1 \oplus \cdots \oplus L_n) \oplus \mathcal{O}_C \oplus (L_n^* \oplus \cdots \oplus L_1^*),$$

$$\begin{pmatrix} 0 \\ \varphi_1 & \ddots & & & \\ & \ddots & 0 \\ & & \varphi_{n-1} & 0 \\ & & & \varphi_n & 0 \\ & & & & -\varphi_n^t & 0 \\ & & & & & \ddots & 0 \\ & & & & & -\varphi_1^t & 0 \end{pmatrix}.$$

$$\varphi = \begin{pmatrix} 0 \\ \varphi_1 & \ddots & & & \\ & & \ddots & 0 \\ & & & & -\varphi_{n-1}^t & \ddots \\ & & & & \ddots & 0 \\ & & & & -\varphi_1^t & 0 \end{pmatrix}.$$
We get divisors $D_j := \operatorname{div}(\varphi_j)$.

Proposition

Fixed point is very stable $\iff D_1 + 2D_2 + \cdots + 2D_n$ is reduced.

Borel type for $G = Sp_{2n}(\mathbb{C})$

We get divisors $D_i := \operatorname{div}(\varphi_i)$.

Proposition

Fixed point is very stable $\iff 2D_1 + \cdots + 2D_{n-1} + D_n$ is reduced.

Multiplicity divisor

Why? General phenomenon.

- $\bullet \ \mathfrak{g}_1 = \bigoplus_{\alpha_i \in \Pi} \mathfrak{g}_{\alpha_i}$
- $G_0 = T \curvearrowright \mathfrak{g}_{\alpha_i}$
- Map $E(\mathfrak{g}_1) \to E(\mathfrak{g}_{\alpha_i})$ gives $\varphi_i \in H^0(E(\mathfrak{g}_{\alpha_i}) \otimes K_X)$ sections of line bundles.
- Divisors $D_i := \operatorname{div}(\varphi_i)$.

Fundamental coweights: $\{\omega_1^{\vee}, \dots, \omega_r^{\vee}\} \subseteq \mathfrak{t}$, dual basis to $\Pi \subseteq \mathfrak{t}^*$.

Definition

For a fixed point $(E, \varphi) \in \mathcal{M}(G)^{\mathbb{C}^{\times}}$ of Borel type, we define its **multiplicity divisor:**

$$\mu(E,\varphi) := \sum_{i=1}^r D_i \omega_i^{\vee}.$$

Divisor on X whose coefficients are (dominant) coweights.

Minuscule coweights

 There is a partial ordering on the space of dominant coweights of g.

$$\lambda \geqslant \mu \iff \lambda - \mu$$
 is a sum of positive coroots .

Minimal dominant coweights are called minuscule.
 Representations of g[∨] with a single Weyl orbit of weights.

For example:

- $\mathfrak{g} = \mathfrak{sl}_n(\mathbb{C})$ has the trivial (0) and every k-th exterior power of the standard (ω_k^{\vee}) .
- $\mathfrak{g} = \mathfrak{so}_{2n}(\mathbb{C})$ has the trivial (0), the standard (ω_1^{\vee}) , and two more $(\omega_{n-1}^{\vee}, \omega_n^{\vee})$.
- E_8 , F_4 , G_2 only have the trivial (0).

Classification theorem

Recall:

- $(E, \varphi) \in \mathcal{M}^{s\mathbb{C}^{\times}}(G)$ smooth fixed point of Borel type.
- $\varphi \leadsto \varphi_i \leadsto D_i \leadsto \mu(E,\varphi)$ a dominant coweight at each point.
- Notion of minimality for dominant coweights.

Theorem

Let $(E, \varphi) \in \mathcal{M}^{s\mathbb{C}^{\times}}(G)$ be a smooth fixed point of Borel type. It is very stable if and only if $\mu(E, \varphi)|_{X}$ is minuscule at every $x \in X$.

Consequences

- Concrete descriptions in classical groups from before.
- We can say which components (of Borel type) have very stable points. Indeed, the **topological type** of the fixed point in $\pi_1(G_0) \simeq \mathbb{Z}^r$ is determined by $\deg \mu(E,\varphi) := \sum_{x \in X} \mu(E,\varphi)|_x$.
- (Hausel–Hitchin, 2022) Every component has very stable points for $\mathfrak{g} = \mathfrak{sl}_n(\mathbb{C})$. Indeed all ω_i^{\vee} are minuscule in this case.
- Not at all for other \mathfrak{g} . Extreme case: E_8 , F_4 , G_2 require regularity everywhere.

Thank you!