Very stable regular G-Higgs bundles

Miguel González (ICMAT) arXiv:2503.01289

Stratifications of Higgs bundle moduli spaces and related topics Universidade de Santiago de Compostela

May 5-9 2025

- G connected semisimple complex group, Lie algebra \mathfrak{g}
- C smooth projective complex curve, $g \ge 2$, canonical K_C
- A *G*-Higgs bundle (E, φ) over *C*:
 - *E* a principal *G*-bundle over *C*
 - φ a section of $E(\mathfrak{g}) \otimes K_C$ (Higgs field)

Moduli space of G-Higgs bundles

- Moduli space of polystable *G*-Higgs bundles $\mathcal{M}(G)$.
- Hyperkähler metric \rightsquigarrow symplectic strucutre ω (on smooth locus)
- Hitchin map $h_G : \mathcal{M}(G) \to \mathcal{A}(G) := \bigoplus_i H^0(C, K_C^{d_i})$, proper.
- Natural C[×]-action:

$$(E, \varphi) \mapsto (E, \lambda \varphi)$$

• Semiprojective: proper fixed point locus, limits at 0 exist.

Definition

The **upward flow** of the fixed point $(E, \varphi) \in \mathcal{M}(G)^{\mathbb{C}^{\times}}$:

$$W^+_{(E,arphi)} := \left\{ (E', arphi') : \lim_{\lambda o 0} (E', \lambda arphi') = (E, arphi)
ight\} \subseteq \mathcal{M}(G)$$

Complex Lagrangian subvarieties (BAA-brane, mirror in $\mathcal{M}({{G}^{\!\!\vee}}))$

Definition (Hausel-Hitchin, 2022)

Smooth fixed point $(E, \varphi) \in \mathcal{M}(G)^{s\mathbb{C}^{\times}}$ is **very stable** if $W_{(E,\varphi)}^{+} \cap h_{G}^{-1}(0) = \{(E,\varphi)\}$. Equivalently, if $W_{(E,\varphi)}^{+} \subseteq \mathcal{M}(G)$ is closed. Otherwise, it is **wobbly**.

- Drinfeld and Laumon: E stable G-bundle → (E, 0) very stable
 ⇒ no nonzero nilpotent φ ∈ H⁰(E(𝔅) ⊗ K_C).
- Motivation: Identifies simplest C[×]-invariant closed complex Lagrangians. h_G is proper on W⁺_(F,α), easier study of mirror.

Question

Can we describe which fixed points are very stable?

Take $G = \operatorname{PGL}_n(\mathbb{C})$ (or $\operatorname{GL}_n(\mathbb{C})$). *E* is a rank *n* vector bundle, $\varphi : E \to E \otimes K_C$ traceless.

Fixed points are related to **chains**: $E = \bigoplus_{j=1}^{m} E_j$, $\varphi(E_j) \subseteq E_{j+1} \otimes K_C$.

$$E_1 \xrightarrow{\varphi_1} E_2 \mathcal{K}_C \xrightarrow{\varphi_2} \dots \xrightarrow{\varphi_{m-1}} E_m \mathcal{K}_C^{m-1}$$

The **type** of a fixed point is $(rk E_1, ..., rk E_m)$.

Example $G = \operatorname{PGL}_n(\mathbb{C})$ II

Type (n): (E, 0) with *E* stable vector bundle. Nonempty open dense subset of very stable (Laumon, 1988).

Type (1, 1, ..., 1): Hausel-Hitchin, 2022. Simplest example:

$$E = \mathcal{O} \oplus \mathcal{K}_{C}^{-1} \oplus \dots \oplus \mathcal{K}_{C}^{-n+1}$$

$$\varphi_{0} = \begin{pmatrix} 0 & 0 & \dots & 0 & 0 \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \end{pmatrix} \qquad \qquad \varphi_{a} = \begin{pmatrix} 0 & 0 & \dots & 0 & -a_{n} \\ 1 & 0 & \dots & 0 & -a_{n-1} \\ 0 & 1 & \dots & 0 & -a_{n-2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \end{pmatrix}$$

for $a = (a_i)_{i=2}^n \in \mathcal{A}(G)$. (E, φ_0) is fixed, upward flow is $\{(E, \varphi_a)\}_a$ **Hitchin section** \rightsquigarrow very stable.

Example $G = \operatorname{PGL}_n(\mathbb{C})$ III

In general, fixed points of type $(1,1,\ldots,1)$ are

 $E = \mathcal{O} \oplus \mathcal{K}_{\mathcal{C}}^{-1}(D_1) \oplus \mathcal{K}_{\mathcal{C}}^{-2}(D_1 + D_2) \oplus \cdots \oplus \mathcal{K}_{\mathcal{C}}^{-n+1}(D_1 + \cdots + D_{n-1})$

$$\varphi = \begin{pmatrix} 0 & 0 & \dots & 0 & 0 \\ \varphi_1 & 0 & \dots & 0 & 0 \\ 0 & \varphi_2 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & \varphi_{n-1} & 0 \end{pmatrix}$$

with $\operatorname{div}(\varphi_j) = D_j$.

Theorem (Hausel–Hitchin, 2022)

Stable fixed point (E, φ) of type (1, 1, ..., 1) is very stable if and only if $D_1 + \cdots + D_{n-1}$ is reduced.

Example $G = \operatorname{PGL}_n(\mathbb{C})$ IV and $G = \operatorname{SO}_{2n}(\mathbb{C})$

- Other types: (Peón-Nieto, 2024), e.g. type $(n_1, n_2) \notin \{(1, 1), (2, 1), (1, 2)\}$ are wobbly.
- Other groups? $G = SO_{2n}(\mathbb{C})$. One type is

Fixed points in $\mathcal{M}(G)$

Fixed points given by $\mathbb{Z}\text{-}\mathsf{gradings:}$

$$\mathfrak{g}=igoplus_{j\in\mathbb{Z}}\mathfrak{g}_j$$

with $[\mathfrak{g}_j, \mathfrak{g}_k] \subseteq \mathfrak{g}_{j+k}$. $[\mathfrak{g}_0, \mathfrak{g}_0] \subseteq \mathfrak{g}_0 \rightsquigarrow G_0 \subseteq G$ connected subgroup. $[\mathfrak{g}_0, \mathfrak{g}_j] \subseteq \mathfrak{g}_j \rightsquigarrow$ representation $G_0 \to \mathsf{GL}(\mathfrak{g}_j)$.

Prop. (Simpson 1988, Biquard–Collier–García-Prada–Toledo, 2023)

Fixed points $(E, \varphi) \in \mathcal{M}(G)^{\mathbb{C}^{\times}}$ characterised by:

- *E* reduces to E_{G_0} a G_0 -bundle.
- $\varphi \in H^0(E_{G_0}(\mathfrak{g}_j) \otimes K_C)$ for $j \neq 0$

Called (G_0, \mathfrak{g}_j) -Higgs pairs.

Example of \mathbb{Z} -grading

 $G = \operatorname{PGL}_n(\mathbb{C})$. Gradings of $\mathfrak{sl}_n(\mathbb{C})$ given by *dividing matrices in blocks* with squares in the diagonal.

(\$0	\mathfrak{g}_{-1}		$ \mathfrak{g}_{1-m}\rangle$	
\mathfrak{g}_1	Øо		\mathfrak{g}_{2-m}	
÷	÷	·	÷	
\mathfrak{g}_{m-1}	\mathfrak{g}_{m-2}		۹٥ /	

I.e. by block size choices (n_1, \ldots, n_m) .

 $G_0 = \mathrm{P}(\mathrm{GL}_{n_1}(\mathbb{C}) \times \cdots \times \mathrm{GL}_{n_m}(\mathbb{C})) = \mathrm{P}(\mathrm{Aut}(V_1) \times \cdots \times \mathrm{Aut}(V_m))$

$$\mathfrak{g}_1 = \bigoplus_{i=1}^{m-1} \operatorname{Hom}(V_i, V_{i+1}).$$

A (G_0, \mathfrak{g}_1) -**Higgs pair** precisely defines a **chain** of type (n_1, \ldots, n_m) .

Question (recall)

Can we describe which fixed points are very stable?

Focus on regular nilpotent Higgs field. These are of Borel type.

Definition

Let $T \subseteq G$ be a maximal torus and $\Pi = \{\alpha_1, \ldots, \alpha_r\} \subseteq \Delta := \Delta(\mathfrak{g}, \mathfrak{t})$ be a system of simple roots. The **Borel grading** is defined by $\mathfrak{t} = \mathfrak{g}_0$ and $\mathfrak{g}_{\alpha_i} \subseteq \mathfrak{g}_1$.

Definition

A fixed point (E, φ) is of **Borel type** if it reduces to (G_0, \mathfrak{g}_1) for the Borel grading.

Borel type for $G = \operatorname{PGL}_n(\mathbb{C})$

Take $G = \operatorname{PGL}_n(\mathbb{C})$.

(\$0	\mathfrak{g}_{-1}		\mathfrak{g}_{1-m}
\mathfrak{g}_1	Øо		\mathfrak{g}_{2-m}
÷	÷	·	÷
\mathfrak{g}_{m-1}	\mathfrak{g}_{m-2}		₿0 /

Borel grading (G_0 a torus) has block sizes (1, 1, ..., 1). Recall:

 $E = \mathcal{O} \oplus \mathcal{K}_{C}^{-1}(D_{1}) \oplus \mathcal{K}_{C}^{-2}(D_{1} + D_{2}) \oplus \dots \oplus \mathcal{K}_{C}^{-n+1}(D_{1} + \dots + D_{n-1})$ $\varphi = \begin{pmatrix} 0 & 0 & \dots & 0 & 0 \\ \varphi_{1} & 0 & \dots & 0 & 0 \\ 0 & \varphi_{2} & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & \varphi_{n-1} & 0 \end{pmatrix}$ with $\operatorname{div}(\varphi_{j}) = D_{j}$. Very stable $\iff D_{1} + \dots + D_{n-1}$ reduced (Hausel-Hitchin, 2022).

Borel type for $G = SO_{2n}(\mathbb{C})$

We get divisors $D_i := \operatorname{div}(\varphi_i)$.

Proposition

Very stable $\iff D_1 + 2D_2 + \cdots + 2D_{n-2} + D_{n-1} + D_n$ is reduced.

Borel type for $G = SO_{2n+1}(\mathbb{C})$

$$\varphi = \begin{pmatrix} L_1 \oplus \cdots \oplus L_n \end{pmatrix} \oplus \mathcal{O}_C \oplus (L_n^* \oplus \cdots \oplus L_1^*), \\ \begin{pmatrix} 0 & & & \\ \varphi_1 & \ddots & & \\ & \ddots & 0 & & \\ & & \varphi_{n-1} & 0 & & \\ & & & \varphi_n & 0 & & \\ & & & & -\varphi_n^t & 0 & & \\ & & & & & -\varphi_{n-1}^t & \ddots & \\ & & & & & & -\varphi_{n-1}^t & 0 \end{pmatrix}.$$

We get divisors $D_j := \operatorname{div}(\varphi_j)$.

Proposition

Fixed point is very stable $\iff D_1 + 2D_2 + \cdots + 2D_n$ is reduced.

Miguel González

Santiago de Compostela

<u>Borel</u> type for $G = Sp_{2n}(\mathbb{C})$

We get divisors $D_i := \operatorname{div}(\varphi_i)$.

Proposition

Fixed point is very stable $\iff 2D_1 + \cdots + 2D_{n-1} + D_n$ is reduced.

Multiplicity divisor

Why? General phenomenon.

•
$$\mathfrak{g}_1 = \bigoplus_{\alpha_i \in \Pi} \mathfrak{g}_{\alpha_i}$$

- $G_0 = T \curvearrowright \mathfrak{g}_{\alpha_i}$
- Map E(g₁) → E(g_{αi}) gives φ_i ∈ H⁰(E(g_{αi}) ⊗ K_C) sections of line bundles.
- Divisors $D_i := \operatorname{div}(\varphi_i)$.

Fundamental coweights: $\{\omega_1^{\vee}, \ldots, \omega_r^{\vee}\} \subseteq \mathfrak{t}$, dual basis to $\Pi \subseteq \mathfrak{t}^*$.

Definition

For a fixed point $(E, \varphi) \in \mathcal{M}(G)^{\mathbb{C}^{\times}}$ of Borel type, we define its **multiplicity divisor:**

$$\mu(E,\varphi):=\sum_{i=1}^r D_i\omega_i^{\vee}.$$

Divisor on C whose coefficients are (dominant) coweights.

• There is a **partial ordering** on the space of dominant coweights of g.

 $\lambda \geqslant \mu \iff \lambda-\mu$ is a sum of positive coroots .

• Minimal dominant coweights are called **minuscule**. Representations of \mathfrak{g}^\vee with a single Weyl orbit of weights.

For example:

- $\mathfrak{g} = \mathfrak{sl}_n(\mathbb{C})$ has the trivial (0) and every *k*-th exterior power of the standard (ω_k^{\vee}) .
- $\mathfrak{g} = \mathfrak{so}_{2n}(\mathbb{C})$ has the trivial (0), the standard (ω_1^{\vee}) , and two more $(\omega_{n-1}^{\vee}, \omega_n^{\vee})$.
- E_8, F_4, G_2 only have the trivial (0).

Recall:

- $(E, \varphi) \in \mathcal{M}^{s\mathbb{C}^{\times}}(G)$ smooth fixed point of Borel type.
- $\varphi \rightsquigarrow \varphi_i \rightsquigarrow D_i \rightsquigarrow \mu(E, \varphi)$ a dominant coweight at each point.
- Notion of minimality for dominant coweights.

Theorem

Let $(E, \varphi) \in \mathcal{M}^{s\mathbb{C}^{\times}}(G)$ be a smooth fixed point of Borel type. It is very stable if and only if $\mu(E, \varphi)|_c$ is minuscule at every $c \in C$.

- Concrete descriptions in classical groups from before.
- We can say which components (of Borel type) have very stable points. Indeed, the **topological type** of the fixed point in $\pi_1(G_0) \simeq \mathbb{Z}^r$ is determined by deg $\mu(E, \varphi) := \sum_{c \in C} \mu(E, \varphi)|_c$.
- (Hausel-Hitchin, 2022) Every component has very stable points for g = sl_n(ℂ). Indeed all ω[∨]_i are minuscule in this case.
- Not at all for other g. Extreme case: *E*₈, *F*₄, *G*₂ require regularity everywhere.

Strategy: Hecke transformations

Fixed points of Borel type can be related by **Hecke** transformations. Fix $c \in C$ and let $C_0 := C \setminus \{c\}$.

Definition

A Hecke transformation of a *G*-Higgs bundle (E, φ) at *c* is (E', φ', ψ) where (E', φ') is another *G*-Higgs bundle together with an isomorphism

$$\psi: (E', \varphi')|_{C_0} \xrightarrow{\sim} (E, \varphi)|_{C_0}.$$

- Trivialise *E* over C_0 as well as over a formal disk $C_1 \simeq \operatorname{Spec} \mathbb{C}[[z]]$ around $c \in C$.
- Transition function over $C_{01} := C_0 \cap C_1 \simeq \operatorname{Spec} \mathbb{C}((z)).$

$$f_E: C_{01} \to G.$$

We fix this data.

- Hecke transformations: change the transition function $f_E \in G((z))$ by $f_E \sigma$ for $\sigma \in G((z))$.
- If $\sigma \in G[[z]]$, result is isomorphic. Therefore

 $\left\{ \begin{array}{l} \text{Hecke transformations} \\ \text{of (E,0) at c} \end{array} \right\} \leftrightarrow \left\{ \begin{array}{l} \text{points in affine Grassmannian} \\ \text{Gr}_{\mathcal{G}} := \mathcal{G}((z))/\mathcal{G}[[z]] \end{array} \right\}$

(non canonically). See (Wong, 2013).

Affine Springer fibre

- What about φ ?
- Locally, $\varphi_1 : C_1 \to \mathfrak{g}$, i.e. in $\mathfrak{g}[[z]]$.
- Given σ ∈ G((z)), it transforms to Ad_{σ⁻¹} φ₁ ∈ g((z)), a priori only over C₀₁.
- We then ask

$$\operatorname{\mathsf{Ad}}_{\sigma^{-1}}\varphi_1\in\mathfrak{g}[[z]],$$

which defines the affine Springer fibre over φ_1 .

 $\left\{ \begin{matrix} \mathsf{Hecke transformations} \\ \mathsf{of}(E,\varphi) \; \mathsf{at} \; c \end{matrix} \right\} \leftrightarrow \left\{ \begin{matrix} \mathsf{points in an affine Springer fibre} \\ \mathsf{given by} \; \varphi \; \mathsf{in } \; \mathsf{Gr}_{\mathcal{G}} \; . \end{matrix} \right\}.$

- \mathbb{C}^{\times} -action on the affine Springer fibre such that if σ gives (E', φ') then $\lambda \cdot \sigma$ gives $(E', \lambda \varphi')$.
- Its fixed points (cocharacters of *T* = *G*₀) produce C[×]-fixed Higgs bundles.
- Can produce curves between \mathbb{C}^{\times} -fixed Higgs bundles from curves in the affine Springer fibre.

Wobbly fixed points

- Consider (E, φ) ∈ M^{sC×}(G) smooth fixed point of Borel type with μ(E, φ)|_c = μ not minuscule.
- There is a positive coroot $\alpha^{\vee} \in \Delta^{\vee}_+$ with $\mu \alpha^{\vee}$ dominant.
- In the affine Grassmannian, there is an (explicit) curve connecting the identity and α[∨].
- Hecke transformation produces curve connecting (E, φ) with (E', φ') such that $\mu(E', \varphi')|_c = \mu \alpha^{\vee}$.
- Can choose α^{\vee} so that the curve is in the affine Springer fibre and stability is preserved.

- Now $\mu(E,\varphi)|_c$ is minuscule for all $c \in C$.
- Wobbly means there is a C[×]-invariant curve connecting (E, φ) with another fixed point.
- This curve comes from Hecke transformation of a similar curve flowing to (E', φ') ∈ M(G)^{sC×}, a Hecke transformation of (E, φ) such that μ(E', φ') has smaller support.
- Arrive at the case $\mu(E, \varphi) = 0$ (everywhere regular φ) which is very stable.
- The **key step** (third point) only works because in the minuscule cases the relevant part of the affine Springer fibre is a single point.

Invariant of fixed point components defined and studied in Hausel–Hitchin, 2022.

Definition

The virtual equivariant multiplicity of a smooth fixed point $(E, \varphi) \in \mathcal{M}^{s\mathbb{C}^{\times}}(G)$ is

$$\mathit{m}(\mathit{E}, arphi) := rac{\chi(\mathsf{Sym}((\mathit{W}^+_{(\mathit{E}, arphi)})^*))}{\chi(\mathsf{Sym}(\mathcal{A}(\mathit{G})^*))} \in \mathbb{Z}((t)).$$

- It is constant along the fixed point components.
- If (E, φ) is very stable, it is a monic, palindromic polynomial with non-negative coefficients and m(E, φ)|_{t=1} ∈ Z_{≥1} is the multiplicity of the component in the nilpotent cone h_G⁻¹(0).

Virtual equivariant multiplicities of Borel type

We can use our description in terms of gradings to obtain the $m(E, \varphi)$ for Borel type in terms of dim \mathfrak{g}_j and $\mu(E, \varphi)$. Here are the very stable ones with μ supported at a point.

Type of \mathfrak{g}	μ	$m_{\mathcal{E}}(t)$
A _n	ω_i^{\vee}	$\prod_{j=1}^{i} \frac{1 - t^{n-j+1}}{1 - t^{j}}$
B _n	ω_1^{\vee}	$1+t+\cdots+t^{2n-1}$
Cn	ω_n^{\vee}	$\prod_{j=1}^{n}(1+t^{j})$
D _n	ω_1^{\vee}	$(1+t^{n-1})(1+t+\dots+t^{n-1})$
	$\omega_{n-1}^{\vee}, \omega_n^{\vee}$	$\prod_{j=1}^{n}(1+t^{j})$
E ₆	$\omega_1^{\vee}, \omega_6^{\vee}$	$(1+t^4+t^8)(1+t+\cdots+t^8)$
E ₇	ω_7^{\vee}	$(1+t^5)(1+t^9)(1+t+\cdots+t^{13})$

These computations appeared in (Hausel–Hitchin, 2022), leading to conjecture that minuscule representations were related to very stable Higgs bundles.

Miguel González

Very stable regular G-Higgs bundles

Virtual equivariant multiplicities and Dynkin polynomials

• The virtual equivariant multiplicities shown above agree with the **Dynkin polynomials**

$${\mathcal D}_\mu(t):=\prod_{lpha\in\Delta^+}rac{1-t^{lpha(
ho^ee+\mu)}}{1-t^{lpha(
ho^ee)}}.$$

• Recall that components of Borel type may not have very stable points. The corresponding virtual equivariant multiplicities (experimentally) are not polynomials. This is in contrast to other types (e.g. (n_1, n_2) for $GL_n(\mathbb{C})$, Peón–Nieto 2024).

Thank you!